File: bintree.mlw

package info (click to toggle)
why3 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 45,020 kB
  • sloc: xml: 185,443; ml: 111,224; ansic: 3,998; sh: 2,578; makefile: 2,568; java: 865; python: 720; javascript: 290; lisp: 205; pascal: 173
file content (214 lines) | stat: -rw-r--r-- 4,302 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

(** {1 Polymorphic binary trees with elements at nodes} *)

module Tree

  type tree 'a = Empty | Node (tree 'a) 'a (tree 'a)

  let predicate is_empty (t:tree 'a)
    ensures { result <-> t = Empty }
  = match t with Empty -> true | Node _ _ _ -> false end

end

(** {2 Number of nodes} *)

module Size

  use Tree
  use int.Int

  let rec function size (t: tree 'a) : int = match t with
    | Empty -> 0
    | Node l _ r -> 1 + size l + size r
  end

  lemma size_nonneg: forall t: tree 'a. 0 <= size t

  lemma size_empty: forall t: tree 'a. 0 = size t <-> t = Empty

end

(** {2 Occurrences in a binary tree} *)

module Occ

  use Tree
  use int.Int

  function occ (x: 'a) (t: tree 'a) : int = match t with
    | Empty      -> 0
    | Node l y r -> (if y = x then 1 else 0) + occ x l + occ x r
  end

  lemma occ_nonneg:
    forall x: 'a, t: tree 'a. 0 <= occ x t

  predicate mem (x: 'a) (t: tree 'a) =
    0 < occ x t

end

(** {2 Height of a tree} *)

module Height

  use Tree
  use int.Int
  use int.MinMax

  let rec function height (t: tree 'a) : int = match t with
    | Empty      -> 0
    | Node l _ r -> 1 + max (height l) (height r)
  end

  lemma height_nonneg:
    forall t: tree 'a. 0 <= height t

end

(** {2 In-order traversal} *)

module Inorder

  use Tree
  use list.List
  use list.Append

  let rec function inorder (t: tree 'a) : list 'a = match t with
    | Empty -> Nil
    | Node l x r -> inorder l ++ Cons x (inorder r)
  end

end

(** {2 Pre-order traversal} *)

module Preorder

  use Tree
  use list.List
  use list.Append

  let rec function preorder (t: tree 'a) : list 'a = match t with
    | Empty -> Nil
    | Node l x r -> Cons x (preorder l ++ preorder r)
  end

end

module InorderLength

  use Tree
  use Size
  use Inorder
  use list.List
  use list.Length

  lemma inorder_length: forall t: tree 'a. length (inorder t) = size t

end

(** {2 Huet's zipper} *)

module Zipper

  use Tree

  type zipper 'a =
    | Top
    | Left  (zipper 'a) 'a (tree 'a)
    | Right (tree 'a)   'a (zipper 'a)

  let rec function zip (t: tree 'a) (z: zipper 'a) : tree 'a =
    match z with
    | Top -> t
    | Left z x r -> zip (Node t x r) z
    | Right l x z -> zip (Node l x t) z
    end

  (* navigating in a tree using a zipper *)

  type pointed 'a = (tree 'a, zipper 'a)

  let function start (t: tree 'a) : pointed 'a = (t, Top)

  let function up (p: pointed 'a) : pointed 'a = match p with
    | _, Top -> p (* do nothing *)
    | l, Left z x r | r, Right l x z -> (Node l x r, z)
  end

  let function top (p: pointed 'a) : tree 'a = let t, z = p in zip t z

  let function down_left (p: pointed 'a) : pointed 'a = match p with
    | Empty, _ -> p (* do nothing *)
    | Node l x r, z -> (l, Left z x r)
  end

  let function down_right (p: pointed 'a) : pointed 'a = match p with
    | Empty, _ -> p (* do nothing *)
    | Node l x r, z -> (r, Right l x z)
  end

end

(* monomorphic AVL trees, for the purpose of Coma tests *)
module AVL

  use int.Int
  use int.MinMax

  type elt

  val predicate lt elt elt
  clone relations.TotalStrictOrder with
    type t = elt, predicate rel = lt, axiom .

  (* binary trees with height stored in nodes *)
  type tree = E | N int tree elt tree

  let function ht (t: tree) : int =
    match t with E -> 0 | N h _ _ _ -> h end

  (* smart constructor *)
  let function node (l: tree) (x: elt) (r: tree) : tree =
    N (1 + max (ht l) (ht r)) l x r

  let rec ghost function height (t: tree) : int
    ensures { result >= 0 }
  = match t with
    | E         -> 0
    | N _ l _ r -> 1 + max (height l) (height r)
    end

  predicate wf (t: tree) =
    match t with
    | E         -> true
    | N h l _ r -> h = height t && wf l && wf r
    end

  predicate mem (y: elt) (t: tree) =
    match t with
    | E         -> false
    | N _ l x r -> mem y l || y=x || mem y r
    end

  predicate tree_lt (t: tree) (y: elt) =
    forall x. mem x t -> lt x y

  predicate lt_tree (y: elt) (t: tree) =
    forall x. mem x t -> lt y x

  predicate bst (t: tree) =
    match t with
    | E         -> true
    | N _ l x r -> bst l && tree_lt l x && bst r && lt_tree x r
    end

  predicate avl (t: tree) =
    match t with
    | E         -> true
    | N _ l _ r -> avl l && avl r && -1 <= height l - height r <= 1
    end

end