1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
|
(** {1 Bit Vectors} *)
(** {2 Powers of two} *)
module Pow2int
use int.Int
function pow2 (i:int) : int
axiom Power_0 : pow2 0 = 1
meta "remove_unused:dependency" axiom Power_0, function pow2
axiom Power_s : forall n: int. n >= 0 -> pow2 (n+1) = 2 * pow2 n
meta "remove_unused:dependency" axiom Power_s, function pow2
lemma Power_1 : pow2 1 = 2
meta "remove_unused:dependency" lemma Power_1, function pow2
lemma Power_sum :
forall n m: int. n >= 0 /\ m >= 0 -> pow2 (n+m) = pow2 n * pow2 m
meta "remove_unused:dependency" lemma Power_sum, function pow2
lemma pow2pos: forall i:int. i >= 0 -> pow2 i > 0
meta "remove_unused:dependency" lemma pow2pos, function pow2
lemma pow2_0: pow2 0 = 0x1
lemma pow2_1: pow2 1 = 0x2
lemma pow2_2: pow2 2 = 0x4
lemma pow2_3: pow2 3 = 0x8
lemma pow2_4: pow2 4 = 0x10
lemma pow2_5: pow2 5 = 0x20
lemma pow2_6: pow2 6 = 0x40
lemma pow2_7: pow2 7 = 0x80
lemma pow2_8: pow2 8 = 0x100
lemma pow2_9: pow2 9 = 0x200
lemma pow2_10: pow2 10 = 0x400
lemma pow2_11: pow2 11 = 0x800
lemma pow2_12: pow2 12 = 0x1000
lemma pow2_13: pow2 13 = 0x2000
lemma pow2_14: pow2 14 = 0x4000
lemma pow2_15: pow2 15 = 0x8000
lemma pow2_16: pow2 16 = 0x10000
lemma pow2_17: pow2 17 = 0x20000
lemma pow2_18: pow2 18 = 0x40000
lemma pow2_19: pow2 19 = 0x80000
lemma pow2_20: pow2 20 = 0x100000
lemma pow2_21: pow2 21 = 0x200000
lemma pow2_22: pow2 22 = 0x400000
lemma pow2_23: pow2 23 = 0x800000
lemma pow2_24: pow2 24 = 0x1000000
lemma pow2_25: pow2 25 = 0x2000000
lemma pow2_26: pow2 26 = 0x4000000
lemma pow2_27: pow2 27 = 0x8000000
lemma pow2_28: pow2 28 = 0x10000000
lemma pow2_29: pow2 29 = 0x20000000
lemma pow2_30: pow2 30 = 0x40000000
lemma pow2_31: pow2 31 = 0x80000000
lemma pow2_32: pow2 32 = 0x100000000
lemma pow2_33: pow2 33 = 0x200000000
lemma pow2_34: pow2 34 = 0x400000000
lemma pow2_35: pow2 35 = 0x800000000
lemma pow2_36: pow2 36 = 0x1000000000
lemma pow2_37: pow2 37 = 0x2000000000
lemma pow2_38: pow2 38 = 0x4000000000
lemma pow2_39: pow2 39 = 0x8000000000
lemma pow2_40: pow2 40 = 0x10000000000
lemma pow2_41: pow2 41 = 0x20000000000
lemma pow2_42: pow2 42 = 0x40000000000
lemma pow2_43: pow2 43 = 0x80000000000
lemma pow2_44: pow2 44 = 0x100000000000
lemma pow2_45: pow2 45 = 0x200000000000
lemma pow2_46: pow2 46 = 0x400000000000
lemma pow2_47: pow2 47 = 0x800000000000
lemma pow2_48: pow2 48 = 0x1000000000000
lemma pow2_49: pow2 49 = 0x2000000000000
lemma pow2_50: pow2 50 = 0x4000000000000
lemma pow2_51: pow2 51 = 0x8000000000000
lemma pow2_52: pow2 52 = 0x10000000000000
lemma pow2_53: pow2 53 = 0x20000000000000
lemma pow2_54: pow2 54 = 0x40000000000000
lemma pow2_55: pow2 55 = 0x80000000000000
lemma pow2_56: pow2 56 = 0x100000000000000
lemma pow2_57: pow2 57 = 0x200000000000000
lemma pow2_58: pow2 58 = 0x400000000000000
lemma pow2_59: pow2 59 = 0x800000000000000
lemma pow2_60: pow2 60 = 0x1000000000000000
lemma pow2_61: pow2 61 = 0x2000000000000000
lemma pow2_62: pow2 62 = 0x4000000000000000
lemma pow2_63: pow2 63 = 0x8000000000000000
lemma pow2_64: pow2 64 = 0x10000000000000000
meta "remove_unused:dependency" lemma pow2_0, function pow2
meta "remove_unused:dependency" lemma pow2_1, function pow2
meta "remove_unused:dependency" lemma pow2_2, function pow2
meta "remove_unused:dependency" lemma pow2_3, function pow2
meta "remove_unused:dependency" lemma pow2_4, function pow2
meta "remove_unused:dependency" lemma pow2_5, function pow2
meta "remove_unused:dependency" lemma pow2_6, function pow2
meta "remove_unused:dependency" lemma pow2_7, function pow2
meta "remove_unused:dependency" lemma pow2_8, function pow2
meta "remove_unused:dependency" lemma pow2_9, function pow2
meta "remove_unused:dependency" lemma pow2_10, function pow2
meta "remove_unused:dependency" lemma pow2_11, function pow2
meta "remove_unused:dependency" lemma pow2_12, function pow2
meta "remove_unused:dependency" lemma pow2_13, function pow2
meta "remove_unused:dependency" lemma pow2_14, function pow2
meta "remove_unused:dependency" lemma pow2_15, function pow2
meta "remove_unused:dependency" lemma pow2_16, function pow2
meta "remove_unused:dependency" lemma pow2_17, function pow2
meta "remove_unused:dependency" lemma pow2_18, function pow2
meta "remove_unused:dependency" lemma pow2_19, function pow2
meta "remove_unused:dependency" lemma pow2_20, function pow2
meta "remove_unused:dependency" lemma pow2_21, function pow2
meta "remove_unused:dependency" lemma pow2_22, function pow2
meta "remove_unused:dependency" lemma pow2_23, function pow2
meta "remove_unused:dependency" lemma pow2_24, function pow2
meta "remove_unused:dependency" lemma pow2_25, function pow2
meta "remove_unused:dependency" lemma pow2_26, function pow2
meta "remove_unused:dependency" lemma pow2_27, function pow2
meta "remove_unused:dependency" lemma pow2_28, function pow2
meta "remove_unused:dependency" lemma pow2_29, function pow2
meta "remove_unused:dependency" lemma pow2_30, function pow2
meta "remove_unused:dependency" lemma pow2_31, function pow2
meta "remove_unused:dependency" lemma pow2_32, function pow2
meta "remove_unused:dependency" lemma pow2_33, function pow2
meta "remove_unused:dependency" lemma pow2_34, function pow2
meta "remove_unused:dependency" lemma pow2_35, function pow2
meta "remove_unused:dependency" lemma pow2_36, function pow2
meta "remove_unused:dependency" lemma pow2_37, function pow2
meta "remove_unused:dependency" lemma pow2_38, function pow2
meta "remove_unused:dependency" lemma pow2_39, function pow2
meta "remove_unused:dependency" lemma pow2_40, function pow2
meta "remove_unused:dependency" lemma pow2_41, function pow2
meta "remove_unused:dependency" lemma pow2_42, function pow2
meta "remove_unused:dependency" lemma pow2_43, function pow2
meta "remove_unused:dependency" lemma pow2_44, function pow2
meta "remove_unused:dependency" lemma pow2_45, function pow2
meta "remove_unused:dependency" lemma pow2_46, function pow2
meta "remove_unused:dependency" lemma pow2_47, function pow2
meta "remove_unused:dependency" lemma pow2_48, function pow2
meta "remove_unused:dependency" lemma pow2_49, function pow2
meta "remove_unused:dependency" lemma pow2_50, function pow2
meta "remove_unused:dependency" lemma pow2_51, function pow2
meta "remove_unused:dependency" lemma pow2_52, function pow2
meta "remove_unused:dependency" lemma pow2_53, function pow2
meta "remove_unused:dependency" lemma pow2_54, function pow2
meta "remove_unused:dependency" lemma pow2_55, function pow2
meta "remove_unused:dependency" lemma pow2_56, function pow2
meta "remove_unused:dependency" lemma pow2_57, function pow2
meta "remove_unused:dependency" lemma pow2_58, function pow2
meta "remove_unused:dependency" lemma pow2_59, function pow2
meta "remove_unused:dependency" lemma pow2_60, function pow2
meta "remove_unused:dependency" lemma pow2_61, function pow2
meta "remove_unused:dependency" lemma pow2_62, function pow2
meta "remove_unused:dependency" lemma pow2_63, function pow2
meta "remove_unused:dependency" lemma pow2_64, function pow2
(*** use int.EuclideanDivision
lemma Div_pow: forall x i:int.
i > 0 -> pow2 (i-1) <= x < pow2 i -> div x (pow2 (i-1)) = 1
lemma Div_div_pow: forall x i j:int.
i > 0 /\ j > 0 -> div (div x (pow2 i)) (pow2 j) = div x (pow2 (i+j))
lemma Mod_pow2_gen: forall x i k :int.
0 <= k < i -> mod (div (x + pow2 i) (pow2 k)) 2 = mod (div x (pow2 k)) 2
*)
end
(** {2 Generic theory of Bit Vectors (arbitrary length)} *)
module BV_Gen
use export bool.Bool
use int.Int
constant size : int
axiom size_pos : size > 0
type t
(** `nth b n` is the `n`-th bit of `b`. Bit 0 is
the least significant bit *)
val function nth t int : bool
axiom nth_out_of_bound: forall x n. n < 0 \/ n >= size -> nth x n = False
meta "remove_unused:dependency" axiom nth_out_of_bound, function nth
constant zeros : t
axiom Nth_zeros:
forall n:int. nth zeros n = False
meta "remove_unused:dependency" axiom Nth_zeros, function zeros
constant one : t
constant ones : t
axiom Nth_ones:
forall n. 0 <= n < size -> nth ones n = True
meta "remove_unused:dependency" axiom Nth_ones, function ones
(** Bitwise operators *)
(* /!\ NOTE : both bw_and and bw_or don't need guard on n because of
nth out of bound axiom *)
val function bw_and (v1 v2 : t) : t
axiom Nth_bw_and:
forall v1 v2:t, n:int. 0 <= n < size ->
nth (bw_and v1 v2) n = andb (nth v1 n) (nth v2 n)
meta "remove_unused:dependency" axiom Nth_bw_and, function bw_and
val function bw_or (v1 v2 : t) : t
axiom Nth_bw_or:
forall v1 v2:t, n:int. 0 <= n < size ->
nth (bw_or v1 v2) n = orb (nth v1 n) (nth v2 n)
meta "remove_unused:dependency" axiom Nth_bw_or, function bw_or
val function bw_xor (v1 v2 : t) : t
axiom Nth_bw_xor:
forall v1 v2:t, n:int. 0 <= n < size ->
nth (bw_xor v1 v2) n = xorb (nth v1 n) (nth v2 n)
meta "remove_unused:dependency" axiom Nth_bw_xor, function bw_xor
val function bw_not (v : t) : t
axiom Nth_bw_not:
forall v:t, n:int. 0 <= n < size ->
nth (bw_not v) n = notb (nth v n)
meta "remove_unused:dependency" axiom Nth_bw_not, function bw_not
(** Shift operators *)
(** Warning: shift operators of an amount greater than or equal to
the size are specified here, in concordance with SMTLIB. This is
not necessarily the case in hardware, where the amount of the
shift might be taken modulo the size, eg. `lsr x 64` might be
equal to `x`, whereas in this theory it is 0.
*)
val function lsr t int : t
axiom Lsr_nth_low:
forall b:t,n s:int. 0 <= s -> 0 <= n -> n+s < size ->
nth (lsr b s) n = nth b (n+s)
meta "remove_unused:dependency" axiom Lsr_nth_low, function lsr
axiom Lsr_nth_high:
forall b:t,n s:int. 0 <= s -> 0 <= n -> n+s >= size ->
nth (lsr b s) n = False
meta "remove_unused:dependency" axiom Lsr_nth_high, function lsr
lemma lsr_zeros: forall x. lsr x 0 = x
meta "remove_unused:dependency" lemma lsr_zeros, function lsr
val function asr t int : t
axiom Asr_nth_low:
forall b:t,n s:int. 0 <= s -> 0 <= n < size -> n+s < size ->
nth (asr b s) n = nth b (n+s)
meta "remove_unused:dependency" axiom Asr_nth_low, function asr
axiom Asr_nth_high:
forall b:t,n s:int. 0 <= s -> 0 <= n < size -> n+s >= size ->
nth (asr b s) n = nth b (size-1)
meta "remove_unused:dependency" axiom Asr_nth_high, function asr
lemma asr_zeros: forall x. asr x 0 = x
meta "remove_unused:dependency" lemma asr_zeros, function asr
val function lsl t int : t
axiom Lsl_nth_high:
forall b:t,n s:int. 0 <= s <= n < size ->
nth (lsl b s) n = nth b (n-s)
meta "remove_unused:dependency" axiom Lsl_nth_high, function lsl
axiom Lsl_nth_low:
forall b:t,n s:int. 0 <= n < s ->
nth (lsl b s) n = False
meta "remove_unused:dependency" axiom Lsl_nth_low, function lsl
lemma lsl_zeros: forall x. lsl x 0 = x
meta "remove_unused:dependency" lemma lsl_zeros, function lsl
use int.EuclideanDivision
use int.ComputerDivision as CD
function rotate_right t int : t
axiom Nth_rotate_right :
forall v n i. 0 <= i < size -> 0 <= n ->
nth (rotate_right v n) i = nth v (mod (i + n) size)
meta "remove_unused:dependency" axiom Nth_rotate_right, function rotate_right
function rotate_left t int : t
axiom Nth_rotate_left :
forall v n i. 0 <= i < size -> 0 <= n ->
nth (rotate_left v n) i = nth v (mod (i - n) size)
meta "remove_unused:dependency" axiom Nth_rotate_left, function rotate_left
(** Conversions from/to integers *)
use Pow2int
constant two_power_size : int
constant two_power_size_minus_one : int
constant max_int : int
axiom two_power_size_val : two_power_size = pow2 size
axiom two_power_size_minus_one_val : two_power_size_minus_one = pow2 (size-1)
axiom max_int_val : max_int = two_power_size - 1
predicate is_signed_positive t
function to_uint t : int
val to_uint (x:t) : int ensures { result = to_uint x }
val function of_int int : t
function to_int (x:t) : int =
if (is_signed_positive x) then (to_uint x) else (- (two_power_size - (to_uint x)))
val to_int (x:t) : int ensures { result = to_int x }
axiom to_uint_extensionality :
forall v,v':t. to_uint v = to_uint v' -> v = v'
meta "remove_unused:dependency" axiom to_uint_extensionality, function to_uint
axiom to_int_extensionality:
forall v,v':t. to_int v = to_int v' -> v = v'
meta "remove_unused:dependency" axiom to_int_extensionality, function to_int
(* *)
predicate uint_in_range (i : int) = (Int.(<=) 0 i) /\ (Int.(<=) i max_int)
(* *)
axiom to_uint_bounds :
(*
forall v:t. uint_in_range (to_uint v)
*)
forall v:t. 0 <= to_uint v < two_power_size
meta "remove_unused:dependency" axiom to_uint_bounds, function to_uint
axiom to_uint_of_int :
forall i. 0 <= i < two_power_size -> to_uint (of_int i) = i
meta "remove_unused:dependency" axiom to_uint_of_int, function to_uint
meta "remove_unused:dependency" axiom to_uint_of_int, function of_int
axiom to_int_bounds :
forall v:t. - two_power_size_minus_one <= to_int v < two_power_size_minus_one
meta "remove_unused:dependency" axiom to_int_bounds, function to_int
axiom to_int_of_int :
forall i. - two_power_size_minus_one <= i < two_power_size_minus_one -> to_int (of_int i) = i
meta "remove_unused:dependency" axiom to_int_of_int, function of_int
constant size_bv : t
axiom to_uint_size_bv : to_uint size_bv = size
axiom to_uint_zeros : to_uint zeros = 0
axiom to_uint_one : to_uint one = 1
axiom to_uint_ones : to_uint ones = max_int
(** comparison operators *)
use export why3.WellFounded.WellFounded
let predicate ult (x y : t) =
Int.(<) (to_uint x) (to_uint y)
(* note : the following must be a lemma so that it is cloned in the instances *)
lemma ult_wf : well_founded ult
meta "vc:proved_wf" predicate ult, lemma ult_wf
meta "remove_unused:dependency" lemma ult_wf, predicate ult
let predicate ule (x y : t) =
Int.(<=) (to_uint x) (to_uint y)
let predicate ugt (x y : t) =
Int.(>) (to_uint x) (to_uint y)
lemma ugt_wf : well_founded ugt
meta "vc:proved_wf" predicate ugt, lemma ugt_wf
meta "remove_unused:dependency" lemma ugt_wf, predicate ugt
let predicate uge (x y : t) =
Int.(>=) (to_uint x) (to_uint y)
let predicate slt (v1 v2 : t) =
Int.(<) (to_int v1) (to_int v2)
lemma slt_wf : well_founded slt
meta "vc:proved_wf" predicate slt, lemma slt_wf
meta "remove_unused:dependency" lemma slt_wf, predicate slt
let predicate sle (v1 v2 : t) =
Int.(<=) (to_int v1) (to_int v2)
let predicate sgt (v1 v2 : t) =
Int.(>) (to_int v1) (to_int v2)
lemma sgt_wf : well_founded sgt
meta "vc:proved_wf" predicate sgt, lemma sgt_wf
meta "remove_unused:dependency" lemma sgt_wf, predicate sgt
let predicate sge (v1 v2 : t) =
Int.(>=) (to_int v1) (to_int v2)
axiom positive_is_ge_zeros:
forall x. is_signed_positive x <-> sge x zeros
meta "remove_unused:dependency" axiom positive_is_ge_zeros, predicate sge
meta "remove_unused:dependency" axiom positive_is_ge_zeros, predicate is_signed_positive
(** Arithmetic operators *)
val function add (v1 v2 : t) : t
axiom to_uint_add:
forall v1 v2. to_uint (add v1 v2) = mod (Int.(+) (to_uint v1) (to_uint v2)) two_power_size
meta "remove_unused:dependency" axiom to_uint_add, function add
lemma to_uint_add_bounded:
forall v1 v2.
to_uint v1 + to_uint v2 < two_power_size ->
to_uint (add v1 v2) = to_uint v1 + to_uint v2
meta "remove_unused:dependency" lemma to_uint_add_bounded, function add
lemma to_uint_add_overflow:
forall v1 v2.
to_uint v1 + to_uint v2 >= two_power_size ->
to_uint (add v1 v2) = to_uint v1 + to_uint v2 - two_power_size
meta "remove_unused:dependency" lemma to_uint_add_overflow, function add
val function sub (v1 v2 : t) : t
axiom to_uint_sub:
forall v1 v2. to_uint (sub v1 v2) = mod (Int.(-) (to_uint v1) (to_uint v2)) two_power_size
meta "remove_unused:dependency" axiom to_uint_sub , function sub
lemma to_uint_sub_bounded:
forall v1 v2.
0 <= to_uint v1 - to_uint v2 ->
to_uint (sub v1 v2) = to_uint v1 - to_uint v2
meta "remove_unused:dependency" lemma to_uint_sub_bounded, function sub
lemma to_uint_sub_overflow:
forall v1 v2.
0 > to_uint v1 - to_uint v2 ->
to_uint (sub v1 v2) = to_uint v1 - to_uint v2 + two_power_size
meta "remove_unused:dependency" lemma to_uint_sub_overflow, function sub
val function neg (v1 : t) : t
axiom to_uint_neg:
forall v. to_uint (neg v) = mod (Int.(-_) (to_uint v)) two_power_size
meta "remove_unused:dependency" axiom to_uint_neg, function neg
lemma to_uint_neg_no_mod:
forall v. to_uint (neg v) =
if v = zeros then 0 else two_power_size - to_uint v
meta "remove_unused:dependency" lemma to_uint_neg_no_mod, function neg
val function mul (v1 v2 : t) : t
axiom to_uint_mul:
forall v1 v2. to_uint (mul v1 v2) = mod (Int.( * ) (to_uint v1) (to_uint v2)) two_power_size
meta "remove_unused:dependency" axiom to_uint_mul, function mul
lemma to_uint_mul_bounded:
forall v1 v2.
to_uint v1 * to_uint v2 < two_power_size ->
to_uint (mul v1 v2) = to_uint v1 * to_uint v2
meta "remove_unused:dependency" lemma to_uint_mul_bounded, function mul
val function udiv (v1 v2 : t) : t
axiom to_uint_udiv:
forall v1 v2. to_uint (udiv v1 v2) = div (to_uint v1) (to_uint v2)
meta "remove_unused:dependency" axiom to_uint_udiv, function udiv
val function urem (v1 v2 : t) : t
axiom to_uint_urem:
forall v1 v2. to_uint (urem v1 v2) = mod (to_uint v1) (to_uint v2)
meta "remove_unused:dependency" axiom to_uint_urem, function urem
val function sdiv (v1 v2 : t) : t
axiom to_int_sdiv:
forall v1 v2. to_int (sdiv v1 v2) = CD.mod (CD.div (to_int v1) (to_int v2)) two_power_size
meta "remove_unused:dependency" axiom to_int_sdiv, function sdiv
axiom to_int_sdiv_bounded:
forall v1 v2.
v1 <> (lsl one (size-1)) \/ v2 <> ones ->
to_int (sdiv v1 v2) = CD.div (to_int v1) (to_int v2)
meta "remove_unused:dependency" axiom to_int_sdiv_bounded, function sdiv
val function srem (v1 v2 : t) : t
axiom to_int_srem:
forall v1 v2. to_int (srem v1 v2) = CD.mod (to_int v1) (to_int v2)
meta "remove_unused:dependency" axiom to_int_srem, function srem
(** Bitvector alternatives for shifts, rotations and nth *)
(** logical shift right *)
val function lsr_bv t t : t
axiom lsr_bv_is_lsr:
forall x n.
lsr_bv x n = lsr x (to_uint n)
meta "remove_unused:dependency" axiom lsr_bv_is_lsr, function lsr_bv
axiom to_uint_lsr:
forall v n : t.
to_uint (lsr_bv v n) = div (to_uint v) (pow2 ( to_uint n ))
meta "remove_unused:dependency" axiom to_uint_lsr, function lsr_bv
(** arithmetic shift right *)
val function asr_bv t t : t
axiom asr_bv_is_asr:
forall x n.
asr_bv x n = asr x (to_uint n)
meta "remove_unused:dependency" axiom asr_bv_is_asr, function asr_bv
(** logical shift left *)
val function lsl_bv t t : t
axiom lsl_bv_is_lsl:
forall x n.
lsl_bv x n = lsl x (to_uint n)
meta "remove_unused:dependency" axiom lsl_bv_is_lsl, function lsl_bv
axiom to_uint_lsl:
forall v n : t.
to_uint (lsl_bv v n) = mod (Int.( * ) (to_uint v) (pow2 (to_uint n))) two_power_size
meta "remove_unused:dependency" axiom to_uint_lsl, function lsl_bv
(** rotations *)
val function rotate_right_bv (v n : t) : t
val function rotate_left_bv (v n : t) : t
axiom rotate_left_bv_is_rotate_left :
forall v n. rotate_left_bv v n = rotate_left v (to_uint n)
meta "remove_unused:dependency" axiom rotate_left_bv_is_rotate_left, function rotate_left_bv
meta "remove_unused:dependency" axiom rotate_left_bv_is_rotate_left, function rotate_left
axiom rotate_right_bv_is_rotate_right :
forall v n. rotate_right_bv v n = rotate_right v (to_uint n)
meta "remove_unused:dependency" axiom rotate_right_bv_is_rotate_right, function rotate_right_bv
meta "remove_unused:dependency" axiom rotate_right_bv_is_rotate_right, function rotate_right
val function nth_bv t t: bool
axiom nth_bv_def:
forall x i.
nth_bv x i = not (bw_and (lsr_bv x i) one = zeros)
meta "remove_unused:dependency" axiom nth_bv_def, function nth_bv
axiom Nth_bv_is_nth:
forall x i.
nth x (to_uint i) = nth_bv x i
meta "remove_unused:dependency" axiom Nth_bv_is_nth, function nth_bv
meta "remove_unused:dependency" axiom Nth_bv_is_nth, function nth
axiom Nth_bv_is_nth2:
forall x i. 0 <= i < two_power_size ->
nth_bv x (of_int i) = nth x i
meta "remove_unused:dependency" axiom Nth_bv_is_nth2, function nth_bv
meta "remove_unused:dependency" axiom Nth_bv_is_nth2, function nth
(** equality axioms *)
predicate eq_sub_bv t t t t
axiom eq_sub_bv_def: forall a b i n.
let mask = lsl_bv (sub (lsl_bv one n) one) i in
eq_sub_bv a b i n = (bw_and b mask = bw_and a mask)
meta "remove_unused:dependency" axiom eq_sub_bv_def, predicate eq_sub_bv
predicate eq_sub (a b:t) (i n:int) =
forall j. i <= j < i + n -> nth a j = nth b j
axiom eq_sub_equiv: forall a b i n:t.
eq_sub a b (to_uint i) (to_uint n)
<-> eq_sub_bv a b i n
meta "remove_unused:dependency" axiom eq_sub_equiv, predicate eq_sub_bv
meta "remove_unused:dependency" axiom eq_sub_equiv, predicate eq_sub
predicate (==) (v1 v2 : t) =
eq_sub v1 v2 0 size
axiom Extensionality [@W:non_conservative_extension:N] :
forall x y : t [x == y]. x == y -> x = y
meta "remove_unused:dependency" axiom Extensionality, predicate (==)
(* not a good idea to apply extensionality systematically here, since provers with built-in bitvectors will prefer using `=` directly
this meta could be added in drivers though.
meta extensionality predicate (==)
*)
val eq (v1 v2 : t) : bool
ensures { result <-> v1 = v2 }
end
(** {2 Bit Vectors of common sizes, 8/16/32/64/128/256} *)
module BV256
constant size : int = 256
constant two_power_size : int =
0x1_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000
constant two_power_size_minus_one : int =
0x8000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000
use int.Int as Int (* needed to use range types *)
type t = < range 0 0xFFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF >
constant zeros : t = 0x0
constant one : t = 0x1
constant ones : t = 0xFFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF
clone export BV_Gen with
type t = t,
function to_uint = t'int,
constant size = size,
constant two_power_size = two_power_size,
constant two_power_size_minus_one = two_power_size_minus_one,
constant max_int = t'maxInt,
constant zeros = zeros,
constant one,
constant ones,
goal size_pos,
goal two_power_size_val,
goal two_power_size_minus_one_val,
goal max_int_val,
axiom . (* should this be "lemma"? "goal"? *)
end
module BV128
constant size : int = 128
constant two_power_size : int =
0x1_0000_0000_0000_0000_0000_0000_0000_0000
constant two_power_size_minus_one : int =
0x8000_0000_0000_0000_0000_0000_0000_0000
use int.Int as Int (* needed to use range types *)
type t = < range 0 0xFFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF >
constant zeros : t = 0x0
constant one : t = 0x1
constant ones : t = 0xFFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF
clone export BV_Gen with
type t = t,
function to_uint = t'int,
constant size = size,
constant two_power_size = two_power_size,
constant two_power_size_minus_one = two_power_size_minus_one,
constant max_int = t'maxInt,
constant zeros,
constant one,
constant ones,
goal size_pos,
goal two_power_size_val,
goal two_power_size_minus_one_val,
goal max_int_val,
axiom . (* should this be "lemma"? "goal"? *)
end
module BV64
constant size : int = 64
constant two_power_size : int = 0x1_0000_0000_0000_0000
constant two_power_size_minus_one : int = 0x8000_0000_0000_0000
use int.Int as Int (* needed to use range types *)
type t = < range 0 0xFFFF_FFFF_FFFF_FFFF >
constant zeros : t = 0x0
constant one : t = 0x1
constant ones : t = 0xFFFF_FFFF_FFFF_FFFF
clone export BV_Gen with
type t = t,
function to_uint = t'int,
constant size = size,
constant two_power_size = two_power_size,
constant two_power_size_minus_one = two_power_size_minus_one,
constant max_int = t'maxInt,
constant zeros,
constant one,
constant ones,
goal size_pos,
goal two_power_size_val,
goal two_power_size_minus_one_val,
goal max_int_val,
axiom . (* should this be "lemma"? "goal"? *)
end
module BV32
constant size : int = 32
constant two_power_size : int = 0x1_0000_0000
constant two_power_size_minus_one : int = 0x8000_0000
use int.Int as Int (* needed to use range types *)
type t = < range 0 0xFFFF_FFFF >
constant zeros : t = 0x0
constant one : t = 0x1
constant ones : t = 0xFFFF_FFFF
clone export BV_Gen with
type t = t,
function to_uint = t'int,
constant size = size,
constant two_power_size = two_power_size,
constant two_power_size_minus_one = two_power_size_minus_one,
constant max_int = t'maxInt,
constant zeros,
constant one,
constant ones,
goal size_pos,
goal two_power_size_val,
goal two_power_size_minus_one_val,
goal max_int_val,
axiom . (* should this be "lemma"? "goal"? *)
end
module BV16
constant size : int = 16
constant two_power_size : int = 0x1_0000
constant two_power_size_minus_one : int = 0x8000
use int.Int as Int (* needed to use range types *)
type t = < range 0 0xFFFF >
constant zeros : t = 0x0
constant one : t = 0x1
constant ones : t = 0xFFFF
clone export BV_Gen with
type t = t,
function to_uint = t'int,
constant size = size,
constant two_power_size = two_power_size,
constant two_power_size_minus_one = two_power_size_minus_one,
constant max_int = t'maxInt,
constant zeros,
constant one,
constant ones,
goal size_pos,
goal two_power_size_val,
goal two_power_size_minus_one_val,
goal max_int_val,
axiom . (* should this be "lemma"? "goal"? *)
end
module BV8
constant size : int = 8
constant two_power_size : int = 0x1_00
constant two_power_size_minus_one : int = 0x80
use int.Int as Int (* needed to use range types *)
type t = < range 0 0xFF >
constant zeros : t = 0x0
constant one : t = 0x1
constant ones : t = 0xFF
clone export BV_Gen with
type t = t,
function to_uint = t'int,
constant size = size,
constant two_power_size = two_power_size,
constant two_power_size_minus_one = two_power_size_minus_one,
constant max_int = t'maxInt,
constant zeros,
constant one,
constant ones,
goal size_pos,
goal two_power_size_val,
goal two_power_size_minus_one_val,
goal max_int_val,
axiom . (* should this be "lemma"? "goal"? *)
end
(** {2 Generic Converter} *)
module BVConverter_Gen
type bigBV
type smallBV
predicate in_small_range bigBV
function to_uint_small smallBV : int
function to_uint_big bigBV : int
val function toBig smallBV : bigBV (* unsigned, that is "zero extend" *)
val function stoBig smallBV : bigBV (* signed, that is "sign extend" *)
val function toSmall bigBV : smallBV
axiom toSmall_to_uint :
forall x:bigBV. in_small_range x ->
to_uint_big x = to_uint_small (toSmall x)
axiom toBig_to_uint :
forall x:smallBV.
to_uint_small x = to_uint_big (toBig x)
(* TODO: specify stoBig by axioms too *)
end
(** {2 Converters of common size_bvs} *)
module BVConverter_128_256
use BV128 as BV128
use BV256 as BV256
predicate in_range (b : BV256.t) = BV256.ule b (0xFFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF:BV256.t)
clone export BVConverter_Gen with
type bigBV = BV256.t,
type smallBV = BV128.t,
predicate in_small_range = in_range,
function to_uint_small = BV128.t'int,
function to_uint_big = BV256.t'int,
axiom toSmall_to_uint, (* TODO: "lemma"? "goal"? *)
axiom toBig_to_uint (* TODO: "lemma"? "goal"? *)
end
module BVConverter_64_256
use BV64 as BV64
use BV256 as BV256
predicate in_range (b : BV256.t) = BV256.ule b (0xFFFF_FFFF_FFFF_FFFF:BV256.t)
clone export BVConverter_Gen with
type bigBV = BV256.t,
type smallBV = BV64.t,
predicate in_small_range = in_range,
function to_uint_small = BV64.t'int,
function to_uint_big = BV256.t'int,
axiom toSmall_to_uint, (* TODO: "lemma"? "goal"? *)
axiom toBig_to_uint (* TODO: "lemma"? "goal"? *)
end
module BVConverter_32_256
use BV32 as BV32
use BV256 as BV256
predicate in_range (b : BV256.t) = BV256.ule b (0xFFFF_FFFF:BV256.t)
clone export BVConverter_Gen with
type bigBV = BV256.t,
type smallBV = BV32.t,
predicate in_small_range = in_range,
function to_uint_small = BV32.t'int,
function to_uint_big = BV256.t'int,
axiom toSmall_to_uint, (* TODO: "lemma"? "goal"? *)
axiom toBig_to_uint (* TODO: "lemma"? "goal"? *)
end
module BVConverter_16_256
use BV16 as BV16
use BV256 as BV256
predicate in_range (b : BV256.t) = BV256.ule b (0xFFFF:BV256.t)
clone export BVConverter_Gen with
type bigBV = BV256.t,
type smallBV = BV16.t,
predicate in_small_range = in_range,
function to_uint_small = BV16.t'int,
function to_uint_big = BV256.t'int,
axiom toSmall_to_uint, (* TODO: "lemma"? "goal"? *)
axiom toBig_to_uint (* TODO: "lemma"? "goal"? *)
end
module BVConverter_8_256
use BV8 as BV8
use BV256 as BV256
predicate in_range (b : BV256.t) = BV256.ule b (0xFF:BV256.t)
clone export BVConverter_Gen with
type bigBV = BV256.t,
type smallBV = BV8.t,
predicate in_small_range = in_range,
function to_uint_small = BV8.t'int,
function to_uint_big = BV256.t'int,
axiom toSmall_to_uint, (* TODO: "lemma"? "goal"? *)
axiom toBig_to_uint (* TODO: "lemma"? "goal"? *)
end
module BVConverter_64_128
use BV64 as BV64
use BV128 as BV128
predicate in_range (b : BV128.t) = BV128.ule b (0xFFFF_FFFF_FFFF_FFFF:BV128.t)
clone export BVConverter_Gen with
type bigBV = BV128.t,
type smallBV = BV64.t,
predicate in_small_range = in_range,
function to_uint_small = BV64.t'int,
function to_uint_big = BV128.t'int,
axiom toSmall_to_uint, (* TODO: "lemma"? "goal"? *)
axiom toBig_to_uint (* TODO: "lemma"? "goal"? *)
end
module BVConverter_32_128
use BV32 as BV32
use BV128 as BV128
predicate in_range (b : BV128.t) = BV128.ule b (0xFFFF_FFFF:BV128.t)
clone export BVConverter_Gen with
type bigBV = BV128.t,
type smallBV = BV32.t,
predicate in_small_range = in_range,
function to_uint_small = BV32.t'int,
function to_uint_big = BV128.t'int,
axiom toSmall_to_uint, (* TODO: "lemma"? "goal"? *)
axiom toBig_to_uint (* TODO: "lemma"? "goal"? *)
end
module BVConverter_16_128
use BV16 as BV16
use BV128 as BV128
predicate in_range (b : BV128.t) = BV128.ule b (0xFFFF:BV128.t)
clone export BVConverter_Gen with
type bigBV = BV128.t,
type smallBV = BV16.t,
predicate in_small_range = in_range,
function to_uint_small = BV16.t'int,
function to_uint_big = BV128.t'int,
axiom toSmall_to_uint, (* TODO: "lemma"? "goal"? *)
axiom toBig_to_uint (* TODO: "lemma"? "goal"? *)
end
module BVConverter_8_128
use BV8 as BV8
use BV128 as BV128
predicate in_range (b : BV128.t) = BV128.ule b (0xFF:BV128.t)
clone export BVConverter_Gen with
type bigBV = BV128.t,
type smallBV = BV8.t,
predicate in_small_range = in_range,
function to_uint_small = BV8.t'int,
function to_uint_big = BV128.t'int,
axiom toSmall_to_uint, (* TODO: "lemma"? "goal"? *)
axiom toBig_to_uint (* TODO: "lemma"? "goal"? *)
end
module BVConverter_32_64
use BV32 as BV32
use BV64 as BV64
predicate in_range (b : BV64.t) = BV64.ule b (0xFFFF_FFFF:BV64.t)
clone export BVConverter_Gen with
type bigBV = BV64.t,
type smallBV = BV32.t,
predicate in_small_range = in_range,
function to_uint_small = BV32.t'int,
function to_uint_big = BV64.t'int,
axiom toSmall_to_uint, (* TODO: "lemma"? "goal"? *)
axiom toBig_to_uint (* TODO: "lemma"? "goal"? *)
end
module BVConverter_16_64
use BV16 as BV16
use BV64 as BV64
predicate in_range (b : BV64.t) = BV64.ule b (0xFFFF:BV64.t)
clone export BVConverter_Gen with
type bigBV = BV64.t,
type smallBV = BV16.t,
predicate in_small_range = in_range,
function to_uint_small = BV16.t'int,
function to_uint_big = BV64.t'int,
axiom toSmall_to_uint, (* TODO: "lemma"? "goal"? *)
axiom toBig_to_uint (* TODO: "lemma"? "goal"? *)
end
module BVConverter_8_64
use BV8 as BV8
use BV64 as BV64
predicate in_range (b : BV64.t) = BV64.ule b (0xFF:BV64.t)
clone export BVConverter_Gen with
type bigBV = BV64.t,
type smallBV = BV8.t,
predicate in_small_range = in_range,
function to_uint_small = BV8.t'int,
function to_uint_big = BV64.t'int,
axiom toSmall_to_uint, (* TODO: "lemma"? "goal"? *)
axiom toBig_to_uint (* TODO: "lemma"? "goal"? *)
end
module BVConverter_16_32
use BV16 as BV16
use BV32 as BV32
predicate in_range (b : BV32.t) = BV32.ule b (0xFFFF:BV32.t)
clone export BVConverter_Gen with
type bigBV = BV32.t,
type smallBV = BV16.t,
predicate in_small_range = in_range,
function to_uint_small = BV16.t'int,
function to_uint_big = BV32.t'int,
axiom toSmall_to_uint, (* TODO: "lemma"? "goal"? *)
axiom toBig_to_uint (* TODO: "lemma"? "goal"? *)
end
module BVConverter_8_32
use BV8 as BV8
use BV32 as BV32
predicate in_range (b : BV32.t) = BV32.ule b (0xFF:BV32.t)
clone export BVConverter_Gen with
type bigBV = BV32.t,
type smallBV = BV8.t,
predicate in_small_range = in_range,
function to_uint_small = BV8.t'int,
function to_uint_big = BV32.t'int,
axiom toSmall_to_uint, (* TODO: "lemma"? "goal"? *)
axiom toBig_to_uint (* TODO: "lemma"? "goal"? *)
end
module BVConverter_8_16
use BV8 as BV8
use BV16 as BV16
predicate in_range (b : BV16.t) = BV16.ule b (0xFF:BV16.t)
clone export BVConverter_Gen with
type bigBV = BV16.t,
type smallBV = BV8.t,
predicate in_small_range = in_range,
function to_uint_small = BV8.t'int,
function to_uint_big = BV16.t'int,
axiom toSmall_to_uint, (* TODO: "lemma"? "goal"? *)
axiom toBig_to_uint (* TODO: "lemma"? "goal"? *)
end
|