1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
|
(** {1 Formalization of Floating-Point Arithmetic}
This formalization follows the {h <a
href="http://ieeexplore.ieee.org/servlet/opac?punumber=4610933">IEEE-754
standard</a>}.
*)
(** {2 Definition of IEEE-754 rounding modes} *)
module Rounding
type mode = NearestTiesToEven | ToZero | Up | Down | NearestTiesToAway
(** nearest ties to even, to zero, upward, downward, nearest ties to away *)
end
(** {2 Handling of IEEE-754 special values}
Special values are +infinity, -infinity, NaN, +0, -0. These are
handled as described in {h <a
href="http://www.lri.fr/~marche/ayad10ijcar.pdf">[Ayad, Marché, IJCAR,
2010]</a>}.
*)
module SpecialValues
type class = Finite | Infinite | NaN
type sign = Neg | Pos
use real.Real
inductive same_sign_real sign real =
| Neg_case: forall x:real. x < 0.0 -> same_sign_real Neg x
| Pos_case: forall x:real. x > 0.0 -> same_sign_real Pos x
(*** useful ???
lemma sign_not_pos_neg : forall x:t.
sign(x) <> Pos -> sign(x) = Neg
lemma sign_not_neg_pos : forall x:t.
sign(x) <> Neg -> sign(x) = Pos
lemma sign_not_pos_neg : forall x:double.
sign(x) <> Pos -> sign(x) = Neg
lemma sign_not_neg_pos : forall x:double.
sign(x) <> Neg -> sign(x) = Pos
*)
lemma same_sign_real_zero1 :
forall b:sign. not same_sign_real b 0.0
lemma same_sign_real_zero2 :
forall x:real.
same_sign_real Neg x /\ same_sign_real Pos x -> false
lemma same_sign_real_zero3 :
forall b:sign, x:real. same_sign_real b x -> x <> 0.0
lemma same_sign_real_correct2 :
forall b:sign, x:real.
same_sign_real b x -> (x < 0.0 <-> b = Neg)
lemma same_sign_real_correct3 :
forall b:sign, x:real.
same_sign_real b x -> (x > 0.0 <-> b = Pos)
end
(** {2 Generic theory of floats}
The theory is parametrized by the real constant `max` which denotes
the maximal representable number, the real constant `min` which denotes
the minimal number whose rounding is not null, and the integer constant
`max_representable_integer` which is the maximal integer `n` such that
every integer between `0` and `n` are representable.
*)
module GenFloat
use Rounding
use real.Real
use real.Abs
use real.FromInt
use int.Int as Int
type t
function round mode real : real
function value t : real
function exact t : real
function model t : real
function round_error (x : t) : real = abs (value x - exact x)
function total_error (x : t) : real = abs (value x - model x)
constant max : real
predicate no_overflow (m:mode) (x:real) = abs (round m x) <= max
axiom Bounded_real_no_overflow :
forall m:mode, x:real. abs x <= max -> no_overflow m x
axiom Round_monotonic :
forall m:mode, x y:real. x <= y -> round m x <= round m y
axiom Round_idempotent :
forall m1 m2:mode, x:real. round m1 (round m2 x) = round m2 x
axiom Round_value :
forall m:mode, x:t. round m (value x) = value x
axiom Bounded_value :
forall x:t. abs (value x) <= max
constant max_representable_integer : int
axiom Exact_rounding_for_integers:
forall m:mode,i:int.
Int.(<=) (Int.(-_) max_representable_integer) i /\
Int.(<=) i max_representable_integer ->
round m (from_int i) = from_int i
(** rounding up and down *)
axiom Round_down_le:
forall x:real. round Down x <= x
axiom Round_up_ge:
forall x:real. round Up x >= x
axiom Round_down_neg:
forall x:real. round Down (-x) = - round Up x
axiom Round_up_neg:
forall x:real. round Up (-x) = - round Down x
(** rounding into a float instead of a real *)
function round_logic mode real : t
axiom Round_logic_def:
forall m:mode, x:real.
no_overflow m x ->
value (round_logic m x) = round m x
end
(** {2 Format of Single precision floats}
A.k.a. binary32 numbers.
*)
module SingleFormat
type single
constant max_single : real = 0x1.FFFFFEp127
constant max_int : int = 16777216 (* 2^24 *)
(*
clone export GenFloatSpecStrict with
type t = single,
constant max = max_single,
constant max_representable_integer = max_int
*)
end
(** {2 Format of Double precision floats}
A.k.a. binary64 numbers.
*)
module DoubleFormat
type double
constant max_double : real = 0x1.FFFFFFFFFFFFFp1023
constant max_int : int = 9007199254740992 (* 2^53 *)
(*
clone export GenFloatSpecStrict with
type t = double,
constant max = max_double,
constant max_representable_integer = max_int
*)
end
module GenFloatSpecStrict
use Rounding
use real.Real
clone export GenFloat with axiom .
predicate of_real_post (m:mode) (x:real) (res:t) =
value res = round m x /\ exact res = x /\ model res = x
(** {3 binary operations} *)
predicate add_post (m:mode) (x y res:t) =
value res = round m (value x + value y) /\
exact res = exact x + exact y /\
model res = model x + model y
predicate sub_post (m:mode) (x y res:t) =
value res = round m (value x - value y) /\
exact res = exact x - exact y /\
model res = model x - model y
predicate mul_post (m:mode) (x y res:t) =
value res = round m (value x * value y) /\
exact res = exact x * exact y /\
model res = model x * model y
predicate div_post (m:mode) (x y res:t) =
value res = round m (value x / value y) /\
exact res = exact x / exact y /\
model res = model x / model y
predicate neg_post (x res:t) =
value res = - value x /\
exact res = - exact x /\
model res = - model x
(** {3 Comparisons} *)
predicate lt (x:t) (y:t) = value x < value y
predicate gt (x:t) (y:t) = value x > value y
end
module Single
use export SingleFormat
clone export GenFloatSpecStrict with
type t = single,
constant max = max_single,
constant max_representable_integer = max_int,
lemma Bounded_real_no_overflow,
axiom . (* TODO: "lemma"? "goal"? *)
end
module Double
use export DoubleFormat
clone export GenFloatSpecStrict with
type t = double,
constant max = max_double,
constant max_representable_integer = max_int,
lemma Bounded_real_no_overflow,
axiom . (* TODO: "lemma"? "goal"? *)
end
(** {2 Generic Full theory of floats}
This theory extends the generic theory above by adding the special values.
*)
module GenFloatFull
use SpecialValues
use Rounding
use real.Real
clone export GenFloat with axiom .
(** {3 special values} *)
function class t : class
predicate is_finite (x:t) = class x = Finite
predicate is_infinite (x:t) = class x = Infinite
predicate is_NaN (x:t) = class x = NaN
predicate is_not_NaN (x:t) = is_finite x \/ is_infinite x
lemma is_not_NaN: forall x:t. is_not_NaN x <-> not (is_NaN x)
function sign t : sign
predicate same_sign_real (x:t) (y:real) =
SpecialValues.same_sign_real (sign x) y
predicate same_sign (x:t) (y:t) = sign x = sign y
predicate diff_sign (x:t) (y:t) = sign x <> sign y
predicate sign_zero_result (m:mode) (x:t) =
value x = 0.0 ->
match m with
| Down -> sign x = Neg
| _ -> sign x = Pos
end
predicate is_minus_infinity (x:t) = is_infinite x /\ sign x = Neg
predicate is_plus_infinity (x:t) = is_infinite x /\ sign x = Pos
predicate is_gen_zero (x:t) = is_finite x /\ value x = 0.0
predicate is_gen_zero_plus (x:t) = is_gen_zero x /\ sign x = Pos
predicate is_gen_zero_minus (x:t) = is_gen_zero x /\ sign x = Neg
(** {3 Useful lemmas on sign} *)
(* non-zero finite gen_float has the same sign as its float_value *)
lemma finite_sign :
forall x:t.
class x = Finite /\ value x <> 0.0 -> same_sign_real x (value x)
lemma finite_sign_pos1:
forall x:t.
class x = Finite /\ value x > 0.0 -> sign x = Pos
lemma finite_sign_pos2:
forall x:t.
class x = Finite /\ value x <> 0.0 /\ sign x = Pos -> value x > 0.0
lemma finite_sign_neg1:
forall x:t. class x = Finite /\ value x < 0.0 -> sign x = Neg
lemma finite_sign_neg2:
forall x:t.
class x = Finite /\ value x <> 0.0 /\ sign x = Neg -> value x < 0.0
lemma diff_sign_trans:
forall x y z:t. diff_sign x y /\ diff_sign y z -> same_sign x z
lemma diff_sign_product:
forall x y:t.
class x = Finite /\ class y = Finite /\ value x * value y < 0.0
-> diff_sign x y
lemma same_sign_product:
forall x y:t.
class x = Finite /\ class y = Finite /\ same_sign x y
-> value x * value y >= 0.0
(** {3 overflow} *)
(** This predicate tells what is the result of a rounding in case
of overflow *)
predicate overflow_value (m:mode) (x:t) =
match m, sign x with
| Down, Neg -> is_infinite x
| Down, Pos -> is_finite x /\ value x = max
| Up, Neg -> is_finite x /\ value x = - max
| Up, Pos -> is_infinite x
| ToZero, Neg -> is_finite x /\ value x = - max
| ToZero, Pos -> is_finite x /\ value x = max
| (NearestTiesToAway | NearestTiesToEven), _ -> is_infinite x
end
(** rounding in logic *)
lemma round1 :
forall m:mode, x:real.
no_overflow m x ->
is_finite (round_logic m x) /\ value(round_logic m x) = round m x
lemma round2 :
forall m:mode, x:real.
not no_overflow m x ->
same_sign_real (round_logic m x) x /\
overflow_value m (round_logic m x)
lemma round3 : forall m:mode, x:real. exact (round_logic m x) = x
lemma round4 : forall m:mode, x:real. model (round_logic m x) = x
(** rounding of zero *)
lemma round_of_zero : forall m:mode. is_gen_zero (round_logic m 0.0)
use real.Abs
lemma round_logic_le : forall m:mode, x:real.
is_finite (round_logic m x) -> abs (value (round_logic m x)) <= max
lemma round_no_overflow : forall m:mode, x:real.
abs x <= max ->
is_finite (round_logic m x) /\ value (round_logic m x) = round m x
constant min : real
lemma positive_constant : forall m:mode, x:real.
min <= x <= max ->
is_finite (round_logic m x) /\ value (round_logic m x) > 0.0 /\
sign (round_logic m x) = Pos
lemma negative_constant : forall m:mode, x:real.
- max <= x <= - min ->
is_finite (round_logic m x) /\ value (round_logic m x) < 0.0 /\
sign (round_logic m x) = Neg
(** lemmas on `gen_zero` *)
lemma is_gen_zero_comp1 : forall x y:t.
is_gen_zero x /\ value x = value y /\ is_finite y -> is_gen_zero y
lemma is_gen_zero_comp2 : forall x y:t.
is_finite x /\ not (is_gen_zero x) /\ value x = value y
-> not (is_gen_zero y)
end
module GenFloatSpecFull
use real.Real
use real.Square
use Rounding
use SpecialValues
clone export GenFloatFull with axiom .
(** {3 binary operations} *)
predicate add_post (m:mode) (x:t) (y:t) (r:t) =
(is_NaN x \/ is_NaN y -> is_NaN r)
/\
(is_finite x /\ is_infinite y -> is_infinite r /\ same_sign r y)
/\
(is_infinite x /\ is_finite y -> is_infinite r /\ same_sign r x)
/\
(is_infinite x /\ is_infinite y ->
if same_sign x y then is_infinite r /\ same_sign r x
else is_NaN r)
/\
(is_finite x /\ is_finite y /\ no_overflow m (value x + value y)
-> is_finite r /\
value r = round m (value x + value y) /\
(if same_sign x y then same_sign r x
else sign_zero_result m r))
/\
(is_finite x /\ is_finite y /\ not no_overflow m (value x + value y)
-> SpecialValues.same_sign_real (sign r) (value x + value y)
/\ overflow_value m r)
/\ exact r = exact x + exact y
/\ model r = model x + model y
predicate sub_post (m:mode) (x:t) (y:t) (r:t) =
(is_NaN x \/ is_NaN y -> is_NaN r)
/\
(is_finite x /\ is_infinite y -> is_infinite r /\ diff_sign r y)
/\
(is_infinite x /\ is_finite y -> is_infinite r /\ same_sign r x)
/\
(is_infinite x /\ is_infinite y ->
if diff_sign x y then is_infinite r /\ same_sign r x
else is_NaN r)
/\
(is_finite x /\ is_finite y /\ no_overflow m (value x - value y)
-> is_finite r /\
value r = round m (value x - value y) /\
(if diff_sign x y then same_sign r x
else sign_zero_result m r))
/\
(is_finite x /\ is_finite y /\ not no_overflow m (value x - value y)
-> SpecialValues.same_sign_real (sign r) (value x - value y)
/\ overflow_value m r)
/\ exact r = exact x - exact y
/\ model r = model x - model y
predicate product_sign (z x y: t) =
(same_sign x y -> sign z = Pos) /\ (diff_sign x y -> sign z = Neg)
predicate mul_post (m:mode) (x:t) (y:t) (r:t) =
(is_NaN x \/ is_NaN y -> is_NaN r)
/\ (is_gen_zero x /\ is_infinite y -> is_NaN r)
/\ (is_finite x /\ is_infinite y /\ value x <> 0.0
-> is_infinite r)
/\ (is_infinite x /\ is_gen_zero y -> is_NaN r)
/\ (is_infinite x /\ is_finite y /\ value y <> 0.0
-> is_infinite r)
/\ (is_infinite x /\ is_infinite y -> is_infinite r)
/\ (is_finite x /\ is_finite y /\ no_overflow m (value x * value y)
-> is_finite r /\ value r = round m (value x * value y))
/\ (is_finite x /\ is_finite y /\ not no_overflow m (value x * value y)
-> overflow_value m r)
/\ (not is_NaN r -> product_sign r x y)
/\ exact r = exact x * exact y
/\ model r = model x * model y
predicate neg_post (x:t) (r:t) =
(is_NaN x -> is_NaN r)
/\ (is_infinite x -> is_infinite r)
/\ (is_finite x -> is_finite r /\ value r = - value x)
/\ (not is_NaN r -> diff_sign r x)
/\ exact r = - exact x
/\ model r = - model x
predicate div_post (m:mode) (x:t) (y:t) (r:t) =
(is_NaN x \/ is_NaN y -> is_NaN r)
/\ (is_finite x /\ is_infinite y -> is_gen_zero r)
/\ (is_infinite x /\ is_finite y -> is_infinite r)
/\ (is_infinite x /\ is_infinite y -> is_NaN r)
/\ (is_finite x /\ is_finite y /\ value y <> 0.0 /\
no_overflow m (value x / value y)
-> is_finite r /\ value r = round m (value x / value y))
/\ (is_finite x /\ is_finite y /\ value y <> 0.0 /\
not no_overflow m (value x / value y)
-> overflow_value m r)
/\ (is_finite x /\ is_gen_zero y /\ value x <> 0.0
-> is_infinite r)
/\ (is_gen_zero x /\ is_gen_zero y -> is_NaN r)
/\ (not is_NaN r -> product_sign r x y)
/\ exact r = exact x / exact y
/\ model r = model x / model y
predicate fma_post (m:mode) (x y z:t) (r:t) =
(is_NaN x \/ is_NaN y \/ is_NaN z -> is_NaN r)
/\ (is_gen_zero x /\ is_infinite y -> is_NaN r)
/\ (is_infinite x /\ is_gen_zero y -> is_NaN r)
/\ (is_finite x /\ value x <> 0.0 /\ is_infinite y /\ is_finite z
-> is_infinite r /\ product_sign r x y)
/\ (is_finite x /\ value x <> 0.0 /\ is_infinite y /\ is_infinite z
-> (if product_sign z x y then is_infinite r /\ same_sign r z
else is_NaN r))
/\ (is_infinite x /\ is_finite y /\ value y <> 0.0 /\ is_finite z
-> is_infinite r /\ product_sign r x y)
/\ (is_infinite x /\ is_finite y /\ value y <> 0.0 /\ is_infinite z
-> (if product_sign z x y then is_infinite r /\ same_sign r z
else is_NaN r))
/\ (is_infinite x /\ is_infinite y /\ is_finite z
-> is_infinite r /\ product_sign r x y)
/\ (is_finite x /\ is_finite y /\ is_infinite z
-> is_infinite r /\ same_sign r z)
/\ (is_infinite x /\ is_infinite y /\ is_infinite z
-> (if product_sign z x y then is_infinite r /\ same_sign r z
else is_NaN r))
/\ (is_finite x /\ is_finite y /\ is_finite z /\
no_overflow m (value x * value y + value z)
-> is_finite r /\
value r = round m (value x * value y + value z) /\
(if product_sign z x y then same_sign r z
else (value x * value y + value z = 0.0 ->
if m = Down then sign r = Neg else sign r = Pos)))
/\ (is_finite x /\ is_finite y /\ is_finite z /\
not no_overflow m (value x * value y + value z)
-> SpecialValues.same_sign_real (sign r) (value x * value y + value z)
/\ overflow_value m r)
/\ exact r = exact x * exact y + exact z
/\ model r = model x * model y + model z
predicate sqrt_post (m:mode) (x:t) (r:t) =
(is_NaN x -> is_NaN r)
/\ (is_plus_infinity x -> is_plus_infinity r)
/\ (is_minus_infinity x -> is_NaN r)
/\ (is_finite x /\ value x < 0.0 -> is_NaN r)
/\ (is_finite x /\ value x = 0.0
-> is_finite r /\ value r = 0.0 /\ same_sign r x)
/\ (is_finite x /\ value x > 0.0
-> is_finite r /\ value r = round m (sqrt (value x)) /\ sign r = Pos)
/\ exact r = sqrt (exact x)
/\ model r = sqrt (model x)
predicate of_real_exact_post (x:real) (r:t) =
is_finite r /\ value r = x /\ exact r = x /\ model r = x
(** {3 Comparisons} *)
predicate le (x:t) (y:t) =
(is_finite x /\ is_finite y /\ value x <= value y)
\/ (is_minus_infinity x /\ is_not_NaN y)
\/ (is_not_NaN x /\ is_plus_infinity y)
predicate lt (x:t) (y:t) =
(is_finite x /\ is_finite y /\ value x < value y)
\/ (is_minus_infinity x /\ is_not_NaN y /\ not (is_minus_infinity y))
\/ (is_not_NaN x /\ not (is_plus_infinity x) /\ is_plus_infinity y)
predicate ge (x:t) (y:t) = le y x
predicate gt (x:t) (y:t) = lt y x
predicate eq (x:t) (y:t) =
(is_finite x /\ is_finite y /\ value x = value y) \/
(is_infinite x /\ is_infinite y /\ same_sign x y)
predicate ne (x:t) (y:t) = not (eq x y)
lemma le_lt_trans:
forall x y z:t. le x y /\ lt y z -> lt x z
lemma lt_le_trans:
forall x y z:t. lt x y /\ le y z -> lt x z
lemma le_ge_asym:
forall x y:t. le x y /\ ge x y -> eq x y
lemma not_lt_ge: forall x y:t.
not (lt x y) /\ is_not_NaN x /\ is_not_NaN y -> ge x y
lemma not_gt_le: forall x y:t.
not (gt x y) /\ is_not_NaN x /\ is_not_NaN y -> le x y
end
(** {2 Full theory of single precision floats} *)
module SingleFull
use export SingleFormat
constant min_single : real = 0x1p-149
clone export GenFloatSpecFull with
type t = single,
constant min = min_single,
constant max = max_single,
constant max_representable_integer = max_int,
lemma Bounded_real_no_overflow,
axiom . (* TODO: "lemma"? "goal"? *)
end
(** {2 Full theory of double precision floats} *)
module DoubleFull
use export DoubleFormat
constant min_double : real = 0x1p-1074
clone export GenFloatSpecFull with
type t = double,
constant min = min_double,
constant max = max_double,
constant max_representable_integer = max_int,
lemma Bounded_real_no_overflow,
axiom . (* TODO: "lemma"? "goal"? *)
end
module GenFloatSpecMultiRounding
use Rounding
use real.Real
use real.Abs
clone export GenFloat with axiom .
(** {3 binary operations} *)
constant min_normalized : real
constant eps_normalized : real
constant eta_normalized : real
predicate add_post (_m:mode) (x y res:t) =
((* CASE 1 : normalized numbers *)
(abs(value x + value y) >= min_normalized ->
abs(value res - (value x + value y)) <= eps_normalized * abs(value x + value y))
/\
(*CASE 2: denormalized numbers *)
(abs(value x + value y) <= min_normalized ->
abs(value res - (value x + value y)) <= eta_normalized))
/\
exact res = exact x + exact y
/\
model res = model x + model y
predicate sub_post (_m:mode) (x y res:t) =
((* CASE 1 : normalized numbers *)
(abs(value x - value y) >= min_normalized ->
abs(value res - (value x - value y)) <= eps_normalized * abs(value x - value y))
/\
(*CASE 2: denormalized numbers *)
(abs(value x - value y) <= min_normalized ->
abs(value res - (value x - value y)) <= eta_normalized))
/\
exact res = exact x - exact y
/\
model res = model x - model y
predicate mul_post (_m:mode) (x y res:t) =
((* CASE 1 : normalized numbers *)
(abs(value x * value y) >= min_normalized ->
abs(value res - (value x * value y)) <= eps_normalized * abs(value x * value y))
/\
(*CASE 2: denormalized numbers *)
(abs(value x * value y) <= min_normalized ->
abs(value res - (value x * value y)) <= eta_normalized))
/\ exact res = exact x * exact y
/\ model res = model x * model y
predicate neg_post (_m:mode) (x res:t) =
((abs(value x) >= min_normalized ->
abs(value res - (- value x)) <= eps_normalized * abs(- value x))
/\
(abs(value x) <= min_normalized ->
abs(value res - (- value x)) <= eta_normalized))
/\ exact res = - exact x
/\ model res = - model x
predicate of_real_post (m:mode) (x:real) (res:t) =
value res = round m x /\ exact res = x /\ model res = x
predicate of_real_exact_post (x:real) (r:t) =
value r = x /\ exact r = x /\ model r = x
(** {3 Comparisons} *)
predicate lt (x:t) (y:t) = value x < value y
predicate gt (x:t) (y:t) = value x > value y
end
(*** TODO: find constants for type single *)
(***
module SingleMultiRounding
constant min_normalized_single : real =
constant eps_normalized_single : real =
constant eta_normalized_single : real =
clone export GenFloatSpecMultiRounding with
type t = single,
constant max = max_single,
constant max_representable_integer = max_int,
constant min_normalized = min_normalized_single,
constant eps_normalized = eps_normalized_single,
constant eta_normalized = eta_normalized_single,
lemma Bounded_real_no_overflow,
axiom . (* TODO: "lemma"? "goal"? *)
end
*)
module DoubleMultiRounding
use export DoubleFormat
constant min_normalized_double : real = 0x1p-1022
constant eps_normalized_double : real = 0x1.004p-53
constant eta_normalized_double : real = 0x1.002p-1075
clone export GenFloatSpecMultiRounding with
type t = double,
constant max = max_double,
constant max_representable_integer = max_int,
constant min_normalized = min_normalized_double,
constant eps_normalized = eps_normalized_double,
constant eta_normalized = eta_normalized_double,
lemma Bounded_real_no_overflow,
axiom . (* TODO: "lemma"? "goal"? *)
end
|