1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
|
(** {1 Finite Domain Maps} *)
(** {2 Polymorphic finite domain maps}
To be used in specifications and ghost code only
*)
module Fmap
use int.Int
use map.Map
use set.Fset as S
type fmap 'k 'v = abstract {
contents: 'k -> 'v;
domain: S.fset 'k;
}
meta coercion function contents
predicate (==) (m1 m2: fmap 'k 'v) =
S.(==) m1.domain m2.domain /\
forall k. S.mem k m1.domain -> m1[k] = m2[k]
axiom extensionality:
forall m1 m2: fmap 'k 'v. m1 == m2 -> m1 = m2
meta extensionality predicate (==)
predicate mem (k: 'k) (m: fmap 'k 'v) =
S.mem k m.domain
predicate mapsto (k: 'k) (v: 'v) (m: fmap 'k 'v) =
mem k m /\ m[k] = v
lemma mem_mapsto:
forall k: 'k, m: fmap 'k 'v. mem k m -> mapsto k m[k] m
predicate is_empty (m: fmap 'k 'v) =
S.is_empty m.domain
function mk (d: S.fset 'k) (m: 'k -> 'v) : fmap 'k 'v
axiom mk_domain:
forall d: S.fset 'k, m: 'k -> 'v. domain (mk d m) = d
axiom mk_contents:
forall d: S.fset 'k, m: 'k -> 'v, k: 'k.
S.mem k d -> (mk d m)[k] = m[k]
constant empty: fmap 'k 'v
axiom is_empty_empty: is_empty (empty: fmap 'k 'v)
function add (k: 'k) (v: 'v) (m: fmap 'k 'v) : fmap 'k 'v
function ([<-]) (m: fmap 'k 'v) (k: 'k) (v: 'v) : fmap 'k 'v =
add k v m
(*** FIXME? (add k v m).contents = m.contents[k <- v] *)
axiom add_contents_k:
forall k v, m: fmap 'k 'v. (add k v m)[k] = v
axiom add_contents_other:
forall k v, m: fmap 'k 'v, k1. mem k1 m -> k1 <> k -> (add k v m)[k1] = m[k1]
axiom add_domain:
forall k v, m: fmap 'k 'v. (add k v m).domain = S.add k m.domain
(*** FIXME? find_opt (k: 'k) (m: fmap 'k 'v) : option 'v *)
function find (k: 'k) (m: fmap 'k 'v) : 'v
axiom find_def:
forall k, m: fmap 'k 'v. mem k m -> find k m = m[k]
function remove (k: 'k) (m: fmap 'k 'v) : fmap 'k 'v
axiom remove_contents:
forall k, m: fmap 'k 'v, k1. mem k1 m -> k1 <> k -> (remove k m)[k1] = m[k1]
axiom remove_domain:
forall k, m: fmap 'k 'v. (remove k m).domain = S.remove k m.domain
function size (m: fmap 'k 'v) : int =
S.cardinal m.domain
end
(** {3 Some additional fmap operators and their properties}
Mainly inspired from set theory a la B
*)
module Fmap_ext
use map.Map
use set.Fset as S
use export Fmap
function dom (m: fmap 'k 'v) : S.fset 'k = m.domain
(** An abbreviation for the domain *)
function apply (m: fmap 'k 'v) (x: 'k): 'v
(** map application *)
axiom apply_result:
forall m: fmap 'k 'v, x. mem x m -> mapsto x (apply m x) m
meta "remove_unused:dependency" axiom apply_result, function apply
function remove_set (s: S.fset 'k) (m: fmap 'k 'v) : fmap 'k 'v
(** domain anti-restriction, `<<|` in B *)
axiom remove_set_contents:
forall m: fmap 'k 'v, s: S.fset 'k, x. mem x m -> not(S.mem x s) -> (remove_set s m)[x] = m[x]
meta "remove_unused:dependency" axiom remove_set_contents, function remove_set
axiom remove_set_domain:
forall m: fmap 'k 'v, s: S.fset 'k. (remove_set s m).domain = S.diff m.domain s
meta "remove_unused:dependency" axiom remove_set_domain, function remove_set
function domain_res (s: S.fset 'k) (m: fmap 'k 'v) : fmap 'k 'v
(** domain restriction, `<|` in B *)
axiom domain_res_contents:
forall m: fmap 'k 'v, s: S.fset 'k, x.
mem x m -> S.mem x s -> (domain_res s m)[x] = m[x]
meta "remove_unused:dependency" axiom domain_res_contents, function domain_res
axiom domain_res_domain:
forall m: fmap 'k 'v, s: S.fset 'k. (domain_res s m).domain = S.inter m.domain s
meta "remove_unused:dependency" axiom domain_res_domain, function domain_res
function override (m1 m2: fmap 'k 'v) : fmap 'k 'v
(** map override, `<+` in B *)
axiom override_contents_1:
forall m1, m2: fmap 'k 'v, x. S.mem x m2.domain -> (override m1 m2)[x] = m2[x]
meta "remove_unused:dependency" axiom override_contents_1, function override
axiom override_contents_2:
forall m1, m2: fmap 'k 'v, x.
S.mem x (S.diff m1.domain m2.domain) -> (override m1 m2)[x] = m1[x]
meta "remove_unused:dependency" axiom override_contents_2, function override
axiom override_domain:
forall m1, m2: fmap 'k 'v. (override m1 m2).domain = S.union m1.domain m2.domain
meta "remove_unused:dependency" axiom override_domain, function override
end
(** {3 Some additional facts about operators above}
They are automatically proven, see session `examples/stdlib/fmap`
*)
module Fmap_ext_facts
use set.Fset as S
use Fmap_ext
lemma anti_res_1 :
forall u : S.fset 'k , m : fmap 'k 'v.
S.inter m.domain u = S.empty -> remove_set u m == m
meta "remove_unused:dependency" lemma anti_res_1, function remove_set
lemma anti_res_2 :
forall u : S.fset 'k , m : fmap 'k 'v.
S.subset m.domain u -> remove_set u m == empty
meta "remove_unused:dependency" lemma anti_res_2, function remove_set
lemma anti_res_3 :
forall m : fmap 'k 'v. remove_set m.domain m == empty
meta "remove_unused:dependency" lemma anti_res_3, function remove_set
lemma anti_res_4 :
forall m : fmap 'k 'v. remove_set S.empty m == m
meta "remove_unused:dependency" lemma anti_res_4, function remove_set
lemma anti_res_res :
forall u, v : S.fset 'k , m : fmap 'k 'v.
remove_set u (domain_res v m) == domain_res (S.diff v u) m
meta "remove_unused:dependency" lemma anti_res_res, function remove_set
lemma anti_res_anti_res :
forall u, v : S.fset 'k , m : fmap 'k 'v.
remove_set u (remove_set v m) == remove_set (S.union v u) m
meta "remove_unused:dependency" lemma anti_res_anti_res, function remove_set
lemma anti_res_override_res :
forall u, m1, m2 : fmap 'k 'v.
remove_set u (override m1 m2) == override (remove_set u m1) (remove_set u m2)
meta "remove_unused:dependency" lemma anti_res_override_res, function remove_set
meta "remove_unused:dependency" lemma anti_res_override_res, function override
lemma remove_remove_set :
forall x : 'k , m : fmap 'k 'v.
remove x m == remove_set (S.singleton x) m
meta "remove_unused:dependency" lemma remove_remove_set, function remove_set
lemma add_override :
forall x: 'k , y: 'v, m : fmap 'k 'v.
add x y m == override m (mk (S.singleton x) (fun _ -> y))
meta "remove_unused:dependency" lemma add_override, function override
end
(** {2 Finite monomorphic maps to be used in programs only}
A program function `eq` deciding equality on the `key` type must be provided when cloned.
*)
(** {3 Applicative maps} *)
module MapApp
use int.Int
use map.Map
use export Fmap
type key
(* we enforce type `key` to have a decidable equality
by requiring the following function *)
val eq (x y: key) : bool
ensures { result <-> x = y }
type t 'v = abstract {
to_fmap: fmap key 'v;
}
meta coercion function to_fmap
val create () : t 'v
ensures { result.to_fmap = empty }
val mem (k: key) (m: t 'v) : bool
ensures { result <-> mem k m }
val is_empty (m: t 'v) : bool
ensures { result <-> is_empty m }
val add (k: key) (v: 'v) (m: t 'v) : t 'v
ensures { result = add k v m }
val find (k: key) (m: t 'v) : 'v
requires { mem k m }
ensures { result = m[k] }
ensures { result = find k m }
use ocaml.Exceptions
val find_exn (k: key) (m: t 'v) : 'v
ensures { S.mem k m.domain }
ensures { result = m[k] }
raises { Not_found -> not (S.mem k m.domain) }
val remove (k: key) (m: t 'v) : t 'v
ensures { result = remove k m }
val size (m: t 'v) : int
ensures { result = size m }
end
(** {3 Applicative maps of integers} *)
module MapAppInt
use int.Int
clone export MapApp with type key = int, val eq = Int.(=)
end
(** {3 Imperative maps} *)
module MapImp
use int.Int
use map.Map
use export Fmap
type key
val eq (x y: key) : bool
ensures { result <-> x = y }
type t 'v = abstract {
mutable to_fmap: fmap key 'v;
}
meta coercion function to_fmap
val create () : t 'v
ensures { result.to_fmap = empty }
val mem (k: key) (m: t 'v) : bool
ensures { result <-> mem k m }
val is_empty (m: t 'v) : bool
ensures { result <-> is_empty m }
val add (k: key) (v: 'v) (m: t 'v) : unit
writes { m }
ensures { m = add k v (old m) }
val find (k: key) (m: t 'v) : 'v
requires { mem k m }
ensures { result = m[k] }
ensures { result = find k m }
use ocaml.Exceptions
val find_exn (k: key) (m: t 'v) : 'v
ensures { S.mem k m.domain }
ensures { result = m[k] }
raises { Not_found -> not (S.mem k m.domain) }
val remove (k: key) (m: t 'v) : unit
writes { m }
ensures { m = remove k (old m) }
val size (m: t 'v) : int
ensures { result = size m }
val clear (m: t 'v) : unit
writes { m }
ensures { m = empty }
end
(** {3 Imperative maps of integers} *)
module MapImpInt
use int.Int
clone export MapImp with type key = int, val eq = Int.(=)
end
|