File: int.mlw

package info (click to toggle)
why3 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 45,020 kB
  • sloc: xml: 185,443; ml: 111,224; ansic: 3,998; sh: 2,578; makefile: 2,568; java: 865; python: 720; javascript: 290; lisp: 205; pascal: 173
file content (702 lines) | stat: -rw-r--r-- 18,553 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702

(** {1 Theory of integers}

This file provides the basic theory of integers, and several additional
theories for classical functions.

*)

(** {2 Integers and the basic operators} *)

module Int

  let constant zero : int = 0
  let constant one  : int = 1

  val (=) (x y : int) : bool ensures { result <-> x = y }

  val function  (-_) int : int
  val function  (+)  int int : int
  val function  (*)  int int : int
  val predicate (<)  int int : bool

  let function  (-)  (x y : int) = x + -y
  let predicate (>)  (x y : int) = y < x
  let predicate (<=) (x y : int) = x < y || x = y
  let predicate (>=) (x y : int) = y <= x

  clone export algebra.OrderedUnitaryCommutativeRing with
    type t = int, constant zero = zero, constant one = one,
    function (-_) = (-_), function (+) = (+),
    function (*) = (*), predicate (<=) = (<=)

  meta "remove_unused:keep" function (+)
  meta "remove_unused:keep" function (-)
(* do not necessarily keep, to allow for linear arithmetic only
  meta "remove_unused:keep" function (*)
*)
  meta "remove_unused:keep" function (-_)
  meta "remove_unused:keep" predicate (<)
  meta "remove_unused:keep" predicate (<=)
  meta "remove_unused:keep" predicate (>)
  meta "remove_unused:keep" predicate (>=)

end

(** {2 Absolute Value} *)

module Abs

  use Int

  let function abs (x:int) : int = if x >= 0 then x else -x

  lemma Abs_le: forall x y:int. abs x <= y <-> -y <= x <= y
  meta "remove_unused:dependency" lemma Abs_le, function abs

  lemma Abs_pos: forall x:int. abs x >= 0
  meta "remove_unused:dependency" lemma Abs_pos, function abs

(***
  lemma Abs_zero: forall x:int. abs x = 0 -> x = 0
*)

end

(** {2 Minimum and Maximum} *)

module MinMax

  use Int

  clone export relations.MinMax with type t = int, predicate le = (<=), goal .

  let min (x y : int) : int
    ensures { result = min x y }
  = if x <= y then x else y

  let max (x y : int) : int
    ensures { result = max x y }
   = if x <= y then y else x


end

(** {2 The Basic Well-Founded Order on Integers} *)

module Lex2

  use Int

  predicate lt_nat (x y: int) = 0 <= y /\ x < y

  clone export relations.Lex with type t1 = int, type t2 = int,
    predicate rel1 = lt_nat, predicate rel2 = lt_nat

end

(** {2 Euclidean Division}

Division and modulo operators with the convention
that modulo is always non-negative.

It implies that division rounds down when divisor is positive, and
rounds up when divisor is negative.

*)

module EuclideanDivision

  use Int
  use Abs

  function div (x y: int) : int
  function mod (x y: int) : int

  axiom Div_mod:
    forall x y:int. y <> 0 -> x = y * div x y + mod x y
  meta "remove_unused:dependency" axiom Div_mod, function div
  meta "remove_unused:dependency" axiom Div_mod, function mod

  axiom Mod_bound:
    forall x y:int. y <> 0 -> 0 <= mod x y < abs y
  meta "remove_unused:dependency" axiom Mod_bound, function mod

  lemma Div_unique:
    forall x y q:int. y > 0 -> q * y <= x < q * y + y -> div x y = q
  meta "remove_unused:dependency" lemma Div_unique, function div

  lemma Div_bound:
    forall x y:int. x >= 0 /\ y > 0 -> 0 <= div x y <= x
  meta "remove_unused:dependency" lemma Div_bound, function div

  lemma Mod_1: forall x:int. mod x 1 = 0
  meta "remove_unused:dependency" lemma Mod_1, function mod

  lemma Div_1: forall x:int. div x 1 = x
  meta "remove_unused:dependency" lemma Div_1, function div

  lemma Div_inf: forall x y:int. 0 <= x < y -> div x y = 0
  meta "remove_unused:dependency" lemma Div_inf, function div

  lemma Div_inf_neg: forall x y:int. 0 < x <= y -> div (-x) y = -1
  meta "remove_unused:dependency" lemma Div_inf_neg, function div

  lemma Mod_0: forall y:int. y <> 0 -> mod 0 y = 0
  meta "remove_unused:dependency" lemma Mod_0, function mod

  lemma Div_1_left: forall y:int. y > 1 -> div 1 y = 0
  meta "remove_unused:dependency" lemma Div_1_left, function div

  lemma Div_minus1_left: forall y:int. y > 1 -> div (-1) y = -1
  meta "remove_unused:dependency" lemma Div_minus1_left, function div

  lemma Mod_1_left: forall y:int. y > 1 -> mod 1 y = 1
  meta "remove_unused:dependency" lemma Mod_1_left, function mod

  lemma Mod_minus1_left: forall y:int. y > 1 -> mod (-1) y = y - 1
  meta "remove_unused:dependency" lemma Mod_minus1_left, function mod

  lemma Div_mult: forall x y z:int [div (x * y + z) x].
          x > 0 ->
          div (x * y + z) x = y + div z x
  meta "remove_unused:dependency" lemma Div_mult, function div

  lemma Mod_mult: forall x y z:int [mod (x * y + z) x].
          x > 0 ->
          mod (x * y + z) x = mod z x
  meta "remove_unused:dependency" lemma Mod_mult, function mod

  val div (x y:int) : int
    requires { y <> 0 }
    ensures { result = div x y }

  val mod (x y:int) : int
    requires { y <> 0 }
    ensures { result = mod x y }


end

(** {2 Division by 2}

The particular case of Euclidean division by 2

*)

module Div2

  use Int

  lemma div2:
    forall x: int. exists y: int. x = 2*y \/ x = 2*y+1

end

(** {2 Computer Division}

Division and modulo operators with the same conventions as mainstream
programming language such as C, Java, OCaml, that is, division rounds
towards zero, and thus `mod x y` has the same sign as `x`.

*)

module ComputerDivision

  use Int
  use Abs

  function div (x y: int) : int
  function mod (x y: int) : int

  axiom Div_mod:
    forall x y:int. y <> 0 -> x = y * div x y + mod x y
  meta "remove_unused:dependency" axiom Div_mod, function div
  meta "remove_unused:dependency" axiom Div_mod, function mod

  axiom Div_bound:
    forall x y:int. x >= 0 /\ y > 0 -> 0 <= div x y <= x
  meta "remove_unused:dependency" axiom Div_bound, function div
  meta "remove_unused:dependency" axiom Div_bound, function mod

  axiom Mod_bound:
    forall x y:int. y <> 0 -> - abs y < mod x y < abs y
  meta "remove_unused:dependency" axiom Mod_bound, function div
  meta "remove_unused:dependency" axiom Mod_bound, function mod

  axiom Div_sign_pos:
    forall x y:int. x >= 0 /\ y > 0 -> div x y >= 0
  meta "remove_unused:dependency" axiom Div_sign_pos, function div
  meta "remove_unused:dependency" axiom Div_sign_pos, function mod

  axiom Div_sign_neg:
    forall x y:int. x <= 0 /\ y > 0 -> div x y <= 0
  meta "remove_unused:dependency" axiom Div_sign_neg, function div
  meta "remove_unused:dependency" axiom Div_sign_neg, function mod

  axiom Mod_sign_pos:
    forall x y:int. x >= 0 /\ y <> 0 -> mod x y >= 0
  meta "remove_unused:dependency" axiom Mod_sign_pos, function div
  meta "remove_unused:dependency" axiom Mod_sign_pos, function mod

  axiom Mod_sign_neg:
    forall x y:int. x <= 0 /\ y <> 0 -> mod x y <= 0
  meta "remove_unused:dependency" axiom Mod_sign_neg, function div
  meta "remove_unused:dependency" axiom Mod_sign_neg, function mod

  lemma Rounds_toward_zero:
    forall x y:int. y <> 0 -> abs (div x y * y) <= abs x
  meta "remove_unused:dependency" lemma Rounds_toward_zero, function div
  meta "remove_unused:dependency" lemma Rounds_toward_zero, function mod

  lemma Div_1: forall x:int. div x 1 = x
  meta "remove_unused:dependency" lemma Div_1, function div
  meta "remove_unused:dependency" lemma Div_1, function mod

  lemma Mod_1: forall x:int. mod x 1 = 0
  meta "remove_unused:dependency" lemma Mod_1, function div
  meta "remove_unused:dependency" lemma Mod_1, function mod

  lemma Div_inf: forall x y:int. 0 <= x < y -> div x y = 0
  meta "remove_unused:dependency" lemma Div_inf, function div
  meta "remove_unused:dependency" lemma Div_inf, function mod

  lemma Mod_inf: forall x y:int. 0 <= x < y -> mod x y = x
  meta "remove_unused:dependency" lemma Mod_inf, function div
  meta "remove_unused:dependency" lemma Mod_inf, function mod

  lemma Div_mult: forall x y z:int [div (x * y + z) x].
          x > 0 /\ y >= 0 /\ z >= 0 ->
          div (x * y + z) x = y + div z x
  meta "remove_unused:dependency" lemma Div_mult, function div
  meta "remove_unused:dependency" lemma Div_mult, function mod

  lemma Mod_mult: forall x y z:int [mod (x * y + z) x].
          x > 0 /\ y >= 0 /\ z >= 0 ->
          mod (x * y + z) x = mod z x
  meta "remove_unused:dependency" lemma Mod_mult, function div
  meta "remove_unused:dependency" lemma Mod_mult, function mod

  val div (x y:int) : int
    requires { y <> 0 }
    ensures { result = div x y }

  val mod (x y:int) : int
    requires { y <> 0 }
    ensures { result = mod x y }

end

(** {2 Generic Exponentiation of something to an integer exponent} *)

module Exponentiation

  use Int

  type t
  constant one : t
  function (*) t t : t

  clone export algebra.Monoid
    with type t = t, constant unit = one, function op = (*), axiom .

  (* TODO: implement with let rec once let cloning is done *)
  function power t int : t

  axiom Power_0 : forall x: t. power x 0 = one

  axiom Power_s : forall x: t, n: int. n >= 0 -> power x (n+1) = x * power x n

  lemma Power_s_alt: forall x: t, n: int. n > 0 -> power x n = x * power x (n-1)

  lemma Power_1 : forall x : t. power x 1 = x

  lemma Power_sum : forall x: t, n m: int. 0 <= n -> 0 <= m ->
    power x (n+m) = power x n * power x m

  lemma Power_mult : forall x:t, n m : int. 0 <= n -> 0 <= m ->
    power x (Int.(*) n m) = power (power x n) m

  lemma Power_comm1 : forall x y: t. x * y = y * x ->
    forall n:int. 0 <= n ->
    power x n * y = y * power x n

  lemma Power_comm2 : forall x y: t. x * y = y * x ->
    forall n:int. 0 <= n ->
    power (x * y) n = power x n * power y n

(* TODO

  use ComputerDivision

  lemma Power_even : forall x:t, n:int. n >= 0 -> mod n 2 = 0 ->
    power x n = power (x*x) (div n 2)

  lemma power_odd : forall x:t, n:int. n >= 0 -> mod n 2 <> 0 ->
    power x n = x * power (x*x) (div n 2)
*)

end

(** {2 Power of an integer to an integer } *)

module Power

  use Int

  (* TODO: remove once power is implemented in Exponentiation *)
  val function power int int : int

  clone export Exponentiation with
    type t = int, constant one = one,
    function (*) = (*), function power = power,
    goal Assoc, goal Unit_def_l, goal Unit_def_r,
    axiom Power_0, axiom Power_s

  lemma Power_non_neg:
     forall x y. x >= 0 /\ y >= 0 -> power x y >= 0

  lemma Power_pos:
     forall x y. x > 0 /\ y >= 0 -> power x y > 0

  lemma Power_monotonic:
    forall x n m:int. 0 < x /\ 0 <= n <= m -> power x n <= power x m

end

(** {2 Number of integers satisfying a given predicate} *)

module NumOf

  use Int

  (** number of `n` such that `a <= n < b` and `p n` *)
  let rec function numof (p: int -> bool) (a b: int) : int
    variant { b - a }
  = if b <= a then 0 else
    if p (b - 1) then 1 + numof p a (b - 1)
                 else     numof p a (b - 1)

  lemma Numof_bounds :
    forall p : int -> bool, a b : int. a < b -> 0 <= numof p a b <= b - a
    (* direct when a>=b, by induction on b when a <= b *)

  lemma Numof_append :
    forall p : int -> bool, a b c : int.
    a <= b <= c -> numof p a c = numof p a b + numof p b c
    (* by induction on c *)

  lemma Numof_left_no_add :
    forall p : int -> bool, a b : int.
    a < b -> not p a -> numof p a b = numof p (a+1) b
    (* by Numof_append *)
  lemma Numof_left_add :
    forall p : int -> bool, a b : int.
    a < b -> p a -> numof p a b = 1 + numof p (a+1) b
    (* by Numof_append *)

  lemma Empty :
    forall p : int -> bool, a b : int.
    (forall n : int. a <= n < b -> not p n) -> numof p a b = 0
    (* by induction on b *)

  lemma Full :
    forall p : int -> bool, a b : int. a <= b ->
    (forall n : int. a <= n < b -> p n) -> numof p a b = b - a
    (* by induction on b *)

  lemma numof_increasing:
    forall p : int -> bool, i j k : int.
    i <= j <= k -> numof p i j <= numof p i k
    (* by Numof_append and Numof_non_negative *)

  lemma numof_strictly_increasing:
    forall p: int -> bool, i j k l: int.
    i <= j <= k < l -> p k -> numof p i j < numof p i l
    (* by Numof_append and numof_increasing *)

  lemma numof_change_any:
    forall p1 p2: int -> bool, a b: int.
    (forall j: int. a <= j < b -> p1 j -> p2 j) ->
    numof p2 a b >= numof p1 a b

  lemma numof_change_some:
    forall p1 p2: int -> bool, a b i: int. a <= i < b ->
    (forall j: int. a <= j < b -> p1 j -> p2 j) ->
    not (p1 i) -> p2 i ->
    numof p2 a b > numof p1 a b

  lemma numof_change_equiv:
    forall p1 p2: int -> bool, a b: int.
    (forall j: int. a <= j < b -> p1 j <-> p2 j) ->
    numof p2 a b = numof p1 a b

end

(** {2 Sum} *)

module Sum

  use Int

  (** sum of `f n` for `a <= n < b` *)
  let rec function sum (f: int -> int) (a b: int) : int
    variant { b - a }
  = if b <= a then 0 else sum f a (b - 1) + f (b - 1)

  lemma sum_left:
    forall f: int -> int, a b: int.
    a < b -> sum f a b = f a + sum f (a + 1) b

  lemma sum_ext:
    forall f g: int -> int, a b: int.
    (forall i. a <= i < b -> f i = g i) ->
    sum f a b = sum g a b

  lemma sum_le:
    forall f g: int -> int, a b: int.
    (forall i. a <= i < b -> f i <= g i) ->
    sum f a b <= sum g a b

  lemma sum_zero:
    forall f: int -> int, a b: int.
    (forall i. a <= i < b -> f i = 0) ->
    sum f a b = 0

  lemma sum_nonneg:
    forall f: int -> int, a b: int.
    (forall i. a <= i < b -> 0 <= f i) ->
    0 <= sum f a b

  lemma sum_decomp:
    forall f: int -> int, a b c: int. a <= b <= c ->
    sum f a c = sum f a b + sum f b c

  let rec lemma shift_left (f g: int -> int) (a b c d: int)
    requires { b - a = d - c }
    requires { forall i. a <= i < b -> f i  = g (c + i - a) }
    variant  { b - a }
    ensures  { sum f a b = sum g c d }
  = if a < b then shift_left f g (a+1) b (c+1) d

end

(** A similar theory, but with a polymorphic parameter passed
    to function `f` and to function `sum`. *)
module SumParam

  use Int

  (** sum of `f x n` for `a <= n < b` *)
  let rec function sum (f: 'a -> int -> int) (x: 'a) (a b: int) : int
    variant { b - a }
  = if b <= a then 0 else sum f x a (b - 1) + f x (b - 1)

  lemma sum_left:
    forall f: 'a -> int -> int, x: 'a, a b: int.
    a < b -> sum f x a b = f x a + sum f x (a + 1) b

  lemma sum_ext:
    forall f: 'a -> int -> int, x: 'a, g: 'b -> int -> int, y: 'b, a b: int.
    (forall i. a <= i < b -> f x i = g y i) ->
    sum f x a b = sum g y a b

  lemma sum_le:
    forall f: 'a -> int -> int, x: 'a, g: 'b -> int -> int, y: 'b, a b: int.
    (forall i. a <= i < b -> f x i <= g y i) ->
    sum f x a b <= sum g y a b

  lemma sum_zero:
    forall f: 'a -> int -> int, x: 'a, a b: int.
    (forall i. a <= i < b -> f x i = 0) ->
    sum f x a b = 0

  lemma sum_nonneg:
    forall f: 'a -> int -> int, x: 'a, a b: int.
    (forall i. a <= i < b -> 0 <= f x i) ->
    0 <= sum f x a b

  lemma sum_decomp:
    forall f: 'a -> int -> int, x: 'a, a b c: int. a <= b <= c ->
    sum f x a c = sum f x a b + sum f x b c

  let rec lemma shift_left
    (f: 'a -> int -> int) (x: 'a)
    (g: 'b -> int -> int) (y: 'b) (a b c d: int)
    requires { b - a = d - c }
    requires { forall i. a <= i < b -> f x i  = g y (c + i - a) }
    variant  { b - a }
    ensures  { sum f x a b = sum g y c d }
  = if a < b then shift_left f x g y (a+1) b (c+1) d

  let rec lemma sum_middle_change (f:'a -> int -> int) (c1 c2:'a) (i j l: int)
    requires { i <= l < j }
    ensures  { (forall k : int. i <= k < j -> k <> l -> f c1 k = f c2 k) ->
               sum f c1 i j - f c1 l = sum f c2 i j - f c2 l }
    variant  { j - l }
  = if l = (j-1) then () else sum_middle_change f c1 c2 i (j-1) l

end

(** {2 Factorial function} *)

module Fact

  use Int

  let rec function fact (n: int) : int
    requires { n >= 0 }
    variant  { n }
  = if n = 0 then 1 else n * fact (n-1)

end

(** {2 Generic iteration of a function} *)

module Iter

  use Int

  (** `iter k x` is `f^k(x)` *)
  let rec function iter (f: 'a -> 'a) (k: int) (x: 'a) : 'a
    requires { k >= 0 }
    variant  { k }
  = if k = 0 then x else iter f (k - 1) (f x)

  lemma iter_1: forall f, x: 'a. iter f 1 x = f x

  lemma iter_s: forall f, k, x: 'a. 0 < k -> iter f k x = f (iter f (k - 1) x)

end

(** {2 Integers extended with an infinite value} *)

module IntInf

  use Int

  type t = Finite int | Infinite

  let function add (x: t) (y: t) : t =
    match x with
      | Infinite -> Infinite
      | Finite x ->
        match y with
          | Infinite -> Infinite
          | Finite y -> Finite (x + y)
        end
    end

  let predicate eq (x y: t) =
    match x, y with
      | Infinite, Infinite -> true
      | Finite x, Finite y -> x = y
      | _, _ -> false
    end

  let predicate lt (x y: t) =
    match x with
      | Infinite -> false
      | Finite x ->
        match y with
          | Infinite -> true
          | Finite y -> x < y
        end
    end

  let predicate le (x y: t) = lt x y || eq x y

  clone export relations.TotalOrder with type t = t, predicate rel = le,
    lemma Refl, lemma Antisymm, lemma Trans, lemma Total

end

(** {2 Induction principle on integers}

This theory can be cloned with the wanted predicate, to perform an
induction, either on nonnegative integers, or more generally on
integers greater or equal a given bound.

*)

module SimpleInduction

  use Int

  predicate p int

  axiom base: p 0

  axiom induction_step: forall n:int. 0 <= n -> p n -> p (n+1)

  lemma SimpleInduction : forall n:int. 0 <= n -> p n

end

module Induction

  use Int

  predicate p int

  lemma Induction :
    (forall n:int. 0 <= n -> (forall k:int. 0 <= k < n -> p k) -> p n) ->
    forall n:int. 0 <= n -> p n

  constant bound : int

  lemma Induction_bound :
    (forall n:int. bound <= n ->
      (forall k:int. bound <= k < n -> p k) -> p n) ->
    forall n:int. bound <= n -> p n

end

module HOInduction

  use Int

  let lemma induction (p: int -> bool)
    requires { p 0 }
    requires { forall n. 0 <= n >= 0 -> p n -> p (n+1) }
    ensures  { forall n. 0 <= n -> p n }
  = let rec lemma f (n: int) requires { n >= 0 } ensures  { p n } variant {n}
    = if n > 0 then f (n-1) in f 0

end

(** {2 Fibonacci numbers} *)

module Fibonacci

  use Int

  let rec function fib (n: int) : int
    requires { n >= 0 }
    variant  { n }
  = if n = 0 then 0 else
    if n = 1 then 1 else
    fib (n-1) + fib (n-2)

end

module WFltof
  use Int
  use relations.WellFounded

  type t
  function f t : int

  axiom f_nonneg: forall x. 0 <= f x

  predicate ltof (x y: t) = f x < f y

  let rec lemma acc_ltof (n: int)
    requires { 0 <= n }
    ensures  { forall x. f x < n -> acc ltof x }
    variant  { n }
  = if n > 0 then acc_ltof (n-1)

  lemma wf_ltof: well_founded ltof

end