1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
|
(** {1 Theory of integers}
This file provides the basic theory of integers, and several additional
theories for classical functions.
*)
(** {2 Integers and the basic operators} *)
module Int
let constant zero : int = 0
let constant one : int = 1
val (=) (x y : int) : bool ensures { result <-> x = y }
val function (-_) int : int
val function (+) int int : int
val function (*) int int : int
val predicate (<) int int : bool
let function (-) (x y : int) = x + -y
let predicate (>) (x y : int) = y < x
let predicate (<=) (x y : int) = x < y || x = y
let predicate (>=) (x y : int) = y <= x
clone export algebra.OrderedUnitaryCommutativeRing with
type t = int, constant zero = zero, constant one = one,
function (-_) = (-_), function (+) = (+),
function (*) = (*), predicate (<=) = (<=)
meta "remove_unused:keep" function (+)
meta "remove_unused:keep" function (-)
(* do not necessarily keep, to allow for linear arithmetic only
meta "remove_unused:keep" function (*)
*)
meta "remove_unused:keep" function (-_)
meta "remove_unused:keep" predicate (<)
meta "remove_unused:keep" predicate (<=)
meta "remove_unused:keep" predicate (>)
meta "remove_unused:keep" predicate (>=)
end
(** {2 Absolute Value} *)
module Abs
use Int
let function abs (x:int) : int = if x >= 0 then x else -x
lemma Abs_le: forall x y:int. abs x <= y <-> -y <= x <= y
meta "remove_unused:dependency" lemma Abs_le, function abs
lemma Abs_pos: forall x:int. abs x >= 0
meta "remove_unused:dependency" lemma Abs_pos, function abs
(***
lemma Abs_zero: forall x:int. abs x = 0 -> x = 0
*)
end
(** {2 Minimum and Maximum} *)
module MinMax
use Int
clone export relations.MinMax with type t = int, predicate le = (<=), goal .
let min (x y : int) : int
ensures { result = min x y }
= if x <= y then x else y
let max (x y : int) : int
ensures { result = max x y }
= if x <= y then y else x
end
(** {2 The Basic Well-Founded Order on Integers} *)
module Lex2
use Int
predicate lt_nat (x y: int) = 0 <= y /\ x < y
clone export relations.Lex with type t1 = int, type t2 = int,
predicate rel1 = lt_nat, predicate rel2 = lt_nat
end
(** {2 Euclidean Division}
Division and modulo operators with the convention
that modulo is always non-negative.
It implies that division rounds down when divisor is positive, and
rounds up when divisor is negative.
*)
module EuclideanDivision
use Int
use Abs
function div (x y: int) : int
function mod (x y: int) : int
axiom Div_mod:
forall x y:int. y <> 0 -> x = y * div x y + mod x y
meta "remove_unused:dependency" axiom Div_mod, function div
meta "remove_unused:dependency" axiom Div_mod, function mod
axiom Mod_bound:
forall x y:int. y <> 0 -> 0 <= mod x y < abs y
meta "remove_unused:dependency" axiom Mod_bound, function mod
lemma Div_unique:
forall x y q:int. y > 0 -> q * y <= x < q * y + y -> div x y = q
meta "remove_unused:dependency" lemma Div_unique, function div
lemma Div_bound:
forall x y:int. x >= 0 /\ y > 0 -> 0 <= div x y <= x
meta "remove_unused:dependency" lemma Div_bound, function div
lemma Mod_1: forall x:int. mod x 1 = 0
meta "remove_unused:dependency" lemma Mod_1, function mod
lemma Div_1: forall x:int. div x 1 = x
meta "remove_unused:dependency" lemma Div_1, function div
lemma Div_inf: forall x y:int. 0 <= x < y -> div x y = 0
meta "remove_unused:dependency" lemma Div_inf, function div
lemma Div_inf_neg: forall x y:int. 0 < x <= y -> div (-x) y = -1
meta "remove_unused:dependency" lemma Div_inf_neg, function div
lemma Mod_0: forall y:int. y <> 0 -> mod 0 y = 0
meta "remove_unused:dependency" lemma Mod_0, function mod
lemma Div_1_left: forall y:int. y > 1 -> div 1 y = 0
meta "remove_unused:dependency" lemma Div_1_left, function div
lemma Div_minus1_left: forall y:int. y > 1 -> div (-1) y = -1
meta "remove_unused:dependency" lemma Div_minus1_left, function div
lemma Mod_1_left: forall y:int. y > 1 -> mod 1 y = 1
meta "remove_unused:dependency" lemma Mod_1_left, function mod
lemma Mod_minus1_left: forall y:int. y > 1 -> mod (-1) y = y - 1
meta "remove_unused:dependency" lemma Mod_minus1_left, function mod
lemma Div_mult: forall x y z:int [div (x * y + z) x].
x > 0 ->
div (x * y + z) x = y + div z x
meta "remove_unused:dependency" lemma Div_mult, function div
lemma Mod_mult: forall x y z:int [mod (x * y + z) x].
x > 0 ->
mod (x * y + z) x = mod z x
meta "remove_unused:dependency" lemma Mod_mult, function mod
val div (x y:int) : int
requires { y <> 0 }
ensures { result = div x y }
val mod (x y:int) : int
requires { y <> 0 }
ensures { result = mod x y }
end
(** {2 Division by 2}
The particular case of Euclidean division by 2
*)
module Div2
use Int
lemma div2:
forall x: int. exists y: int. x = 2*y \/ x = 2*y+1
end
(** {2 Computer Division}
Division and modulo operators with the same conventions as mainstream
programming language such as C, Java, OCaml, that is, division rounds
towards zero, and thus `mod x y` has the same sign as `x`.
*)
module ComputerDivision
use Int
use Abs
function div (x y: int) : int
function mod (x y: int) : int
axiom Div_mod:
forall x y:int. y <> 0 -> x = y * div x y + mod x y
meta "remove_unused:dependency" axiom Div_mod, function div
meta "remove_unused:dependency" axiom Div_mod, function mod
axiom Div_bound:
forall x y:int. x >= 0 /\ y > 0 -> 0 <= div x y <= x
meta "remove_unused:dependency" axiom Div_bound, function div
meta "remove_unused:dependency" axiom Div_bound, function mod
axiom Mod_bound:
forall x y:int. y <> 0 -> - abs y < mod x y < abs y
meta "remove_unused:dependency" axiom Mod_bound, function div
meta "remove_unused:dependency" axiom Mod_bound, function mod
axiom Div_sign_pos:
forall x y:int. x >= 0 /\ y > 0 -> div x y >= 0
meta "remove_unused:dependency" axiom Div_sign_pos, function div
meta "remove_unused:dependency" axiom Div_sign_pos, function mod
axiom Div_sign_neg:
forall x y:int. x <= 0 /\ y > 0 -> div x y <= 0
meta "remove_unused:dependency" axiom Div_sign_neg, function div
meta "remove_unused:dependency" axiom Div_sign_neg, function mod
axiom Mod_sign_pos:
forall x y:int. x >= 0 /\ y <> 0 -> mod x y >= 0
meta "remove_unused:dependency" axiom Mod_sign_pos, function div
meta "remove_unused:dependency" axiom Mod_sign_pos, function mod
axiom Mod_sign_neg:
forall x y:int. x <= 0 /\ y <> 0 -> mod x y <= 0
meta "remove_unused:dependency" axiom Mod_sign_neg, function div
meta "remove_unused:dependency" axiom Mod_sign_neg, function mod
lemma Rounds_toward_zero:
forall x y:int. y <> 0 -> abs (div x y * y) <= abs x
meta "remove_unused:dependency" lemma Rounds_toward_zero, function div
meta "remove_unused:dependency" lemma Rounds_toward_zero, function mod
lemma Div_1: forall x:int. div x 1 = x
meta "remove_unused:dependency" lemma Div_1, function div
meta "remove_unused:dependency" lemma Div_1, function mod
lemma Mod_1: forall x:int. mod x 1 = 0
meta "remove_unused:dependency" lemma Mod_1, function div
meta "remove_unused:dependency" lemma Mod_1, function mod
lemma Div_inf: forall x y:int. 0 <= x < y -> div x y = 0
meta "remove_unused:dependency" lemma Div_inf, function div
meta "remove_unused:dependency" lemma Div_inf, function mod
lemma Mod_inf: forall x y:int. 0 <= x < y -> mod x y = x
meta "remove_unused:dependency" lemma Mod_inf, function div
meta "remove_unused:dependency" lemma Mod_inf, function mod
lemma Div_mult: forall x y z:int [div (x * y + z) x].
x > 0 /\ y >= 0 /\ z >= 0 ->
div (x * y + z) x = y + div z x
meta "remove_unused:dependency" lemma Div_mult, function div
meta "remove_unused:dependency" lemma Div_mult, function mod
lemma Mod_mult: forall x y z:int [mod (x * y + z) x].
x > 0 /\ y >= 0 /\ z >= 0 ->
mod (x * y + z) x = mod z x
meta "remove_unused:dependency" lemma Mod_mult, function div
meta "remove_unused:dependency" lemma Mod_mult, function mod
val div (x y:int) : int
requires { y <> 0 }
ensures { result = div x y }
val mod (x y:int) : int
requires { y <> 0 }
ensures { result = mod x y }
end
(** {2 Generic Exponentiation of something to an integer exponent} *)
module Exponentiation
use Int
type t
constant one : t
function (*) t t : t
clone export algebra.Monoid
with type t = t, constant unit = one, function op = (*), axiom .
(* TODO: implement with let rec once let cloning is done *)
function power t int : t
axiom Power_0 : forall x: t. power x 0 = one
axiom Power_s : forall x: t, n: int. n >= 0 -> power x (n+1) = x * power x n
lemma Power_s_alt: forall x: t, n: int. n > 0 -> power x n = x * power x (n-1)
lemma Power_1 : forall x : t. power x 1 = x
lemma Power_sum : forall x: t, n m: int. 0 <= n -> 0 <= m ->
power x (n+m) = power x n * power x m
lemma Power_mult : forall x:t, n m : int. 0 <= n -> 0 <= m ->
power x (Int.(*) n m) = power (power x n) m
lemma Power_comm1 : forall x y: t. x * y = y * x ->
forall n:int. 0 <= n ->
power x n * y = y * power x n
lemma Power_comm2 : forall x y: t. x * y = y * x ->
forall n:int. 0 <= n ->
power (x * y) n = power x n * power y n
(* TODO
use ComputerDivision
lemma Power_even : forall x:t, n:int. n >= 0 -> mod n 2 = 0 ->
power x n = power (x*x) (div n 2)
lemma power_odd : forall x:t, n:int. n >= 0 -> mod n 2 <> 0 ->
power x n = x * power (x*x) (div n 2)
*)
end
(** {2 Power of an integer to an integer } *)
module Power
use Int
(* TODO: remove once power is implemented in Exponentiation *)
val function power int int : int
clone export Exponentiation with
type t = int, constant one = one,
function (*) = (*), function power = power,
goal Assoc, goal Unit_def_l, goal Unit_def_r,
axiom Power_0, axiom Power_s
lemma Power_non_neg:
forall x y. x >= 0 /\ y >= 0 -> power x y >= 0
lemma Power_pos:
forall x y. x > 0 /\ y >= 0 -> power x y > 0
lemma Power_monotonic:
forall x n m:int. 0 < x /\ 0 <= n <= m -> power x n <= power x m
end
(** {2 Number of integers satisfying a given predicate} *)
module NumOf
use Int
(** number of `n` such that `a <= n < b` and `p n` *)
let rec function numof (p: int -> bool) (a b: int) : int
variant { b - a }
= if b <= a then 0 else
if p (b - 1) then 1 + numof p a (b - 1)
else numof p a (b - 1)
lemma Numof_bounds :
forall p : int -> bool, a b : int. a < b -> 0 <= numof p a b <= b - a
(* direct when a>=b, by induction on b when a <= b *)
lemma Numof_append :
forall p : int -> bool, a b c : int.
a <= b <= c -> numof p a c = numof p a b + numof p b c
(* by induction on c *)
lemma Numof_left_no_add :
forall p : int -> bool, a b : int.
a < b -> not p a -> numof p a b = numof p (a+1) b
(* by Numof_append *)
lemma Numof_left_add :
forall p : int -> bool, a b : int.
a < b -> p a -> numof p a b = 1 + numof p (a+1) b
(* by Numof_append *)
lemma Empty :
forall p : int -> bool, a b : int.
(forall n : int. a <= n < b -> not p n) -> numof p a b = 0
(* by induction on b *)
lemma Full :
forall p : int -> bool, a b : int. a <= b ->
(forall n : int. a <= n < b -> p n) -> numof p a b = b - a
(* by induction on b *)
lemma numof_increasing:
forall p : int -> bool, i j k : int.
i <= j <= k -> numof p i j <= numof p i k
(* by Numof_append and Numof_non_negative *)
lemma numof_strictly_increasing:
forall p: int -> bool, i j k l: int.
i <= j <= k < l -> p k -> numof p i j < numof p i l
(* by Numof_append and numof_increasing *)
lemma numof_change_any:
forall p1 p2: int -> bool, a b: int.
(forall j: int. a <= j < b -> p1 j -> p2 j) ->
numof p2 a b >= numof p1 a b
lemma numof_change_some:
forall p1 p2: int -> bool, a b i: int. a <= i < b ->
(forall j: int. a <= j < b -> p1 j -> p2 j) ->
not (p1 i) -> p2 i ->
numof p2 a b > numof p1 a b
lemma numof_change_equiv:
forall p1 p2: int -> bool, a b: int.
(forall j: int. a <= j < b -> p1 j <-> p2 j) ->
numof p2 a b = numof p1 a b
end
(** {2 Sum} *)
module Sum
use Int
(** sum of `f n` for `a <= n < b` *)
let rec function sum (f: int -> int) (a b: int) : int
variant { b - a }
= if b <= a then 0 else sum f a (b - 1) + f (b - 1)
lemma sum_left:
forall f: int -> int, a b: int.
a < b -> sum f a b = f a + sum f (a + 1) b
lemma sum_ext:
forall f g: int -> int, a b: int.
(forall i. a <= i < b -> f i = g i) ->
sum f a b = sum g a b
lemma sum_le:
forall f g: int -> int, a b: int.
(forall i. a <= i < b -> f i <= g i) ->
sum f a b <= sum g a b
lemma sum_zero:
forall f: int -> int, a b: int.
(forall i. a <= i < b -> f i = 0) ->
sum f a b = 0
lemma sum_nonneg:
forall f: int -> int, a b: int.
(forall i. a <= i < b -> 0 <= f i) ->
0 <= sum f a b
lemma sum_decomp:
forall f: int -> int, a b c: int. a <= b <= c ->
sum f a c = sum f a b + sum f b c
let rec lemma shift_left (f g: int -> int) (a b c d: int)
requires { b - a = d - c }
requires { forall i. a <= i < b -> f i = g (c + i - a) }
variant { b - a }
ensures { sum f a b = sum g c d }
= if a < b then shift_left f g (a+1) b (c+1) d
end
(** A similar theory, but with a polymorphic parameter passed
to function `f` and to function `sum`. *)
module SumParam
use Int
(** sum of `f x n` for `a <= n < b` *)
let rec function sum (f: 'a -> int -> int) (x: 'a) (a b: int) : int
variant { b - a }
= if b <= a then 0 else sum f x a (b - 1) + f x (b - 1)
lemma sum_left:
forall f: 'a -> int -> int, x: 'a, a b: int.
a < b -> sum f x a b = f x a + sum f x (a + 1) b
lemma sum_ext:
forall f: 'a -> int -> int, x: 'a, g: 'b -> int -> int, y: 'b, a b: int.
(forall i. a <= i < b -> f x i = g y i) ->
sum f x a b = sum g y a b
lemma sum_le:
forall f: 'a -> int -> int, x: 'a, g: 'b -> int -> int, y: 'b, a b: int.
(forall i. a <= i < b -> f x i <= g y i) ->
sum f x a b <= sum g y a b
lemma sum_zero:
forall f: 'a -> int -> int, x: 'a, a b: int.
(forall i. a <= i < b -> f x i = 0) ->
sum f x a b = 0
lemma sum_nonneg:
forall f: 'a -> int -> int, x: 'a, a b: int.
(forall i. a <= i < b -> 0 <= f x i) ->
0 <= sum f x a b
lemma sum_decomp:
forall f: 'a -> int -> int, x: 'a, a b c: int. a <= b <= c ->
sum f x a c = sum f x a b + sum f x b c
let rec lemma shift_left
(f: 'a -> int -> int) (x: 'a)
(g: 'b -> int -> int) (y: 'b) (a b c d: int)
requires { b - a = d - c }
requires { forall i. a <= i < b -> f x i = g y (c + i - a) }
variant { b - a }
ensures { sum f x a b = sum g y c d }
= if a < b then shift_left f x g y (a+1) b (c+1) d
let rec lemma sum_middle_change (f:'a -> int -> int) (c1 c2:'a) (i j l: int)
requires { i <= l < j }
ensures { (forall k : int. i <= k < j -> k <> l -> f c1 k = f c2 k) ->
sum f c1 i j - f c1 l = sum f c2 i j - f c2 l }
variant { j - l }
= if l = (j-1) then () else sum_middle_change f c1 c2 i (j-1) l
end
(** {2 Factorial function} *)
module Fact
use Int
let rec function fact (n: int) : int
requires { n >= 0 }
variant { n }
= if n = 0 then 1 else n * fact (n-1)
end
(** {2 Generic iteration of a function} *)
module Iter
use Int
(** `iter k x` is `f^k(x)` *)
let rec function iter (f: 'a -> 'a) (k: int) (x: 'a) : 'a
requires { k >= 0 }
variant { k }
= if k = 0 then x else iter f (k - 1) (f x)
lemma iter_1: forall f, x: 'a. iter f 1 x = f x
lemma iter_s: forall f, k, x: 'a. 0 < k -> iter f k x = f (iter f (k - 1) x)
end
(** {2 Integers extended with an infinite value} *)
module IntInf
use Int
type t = Finite int | Infinite
let function add (x: t) (y: t) : t =
match x with
| Infinite -> Infinite
| Finite x ->
match y with
| Infinite -> Infinite
| Finite y -> Finite (x + y)
end
end
let predicate eq (x y: t) =
match x, y with
| Infinite, Infinite -> true
| Finite x, Finite y -> x = y
| _, _ -> false
end
let predicate lt (x y: t) =
match x with
| Infinite -> false
| Finite x ->
match y with
| Infinite -> true
| Finite y -> x < y
end
end
let predicate le (x y: t) = lt x y || eq x y
clone export relations.TotalOrder with type t = t, predicate rel = le,
lemma Refl, lemma Antisymm, lemma Trans, lemma Total
end
(** {2 Induction principle on integers}
This theory can be cloned with the wanted predicate, to perform an
induction, either on nonnegative integers, or more generally on
integers greater or equal a given bound.
*)
module SimpleInduction
use Int
predicate p int
axiom base: p 0
axiom induction_step: forall n:int. 0 <= n -> p n -> p (n+1)
lemma SimpleInduction : forall n:int. 0 <= n -> p n
end
module Induction
use Int
predicate p int
lemma Induction :
(forall n:int. 0 <= n -> (forall k:int. 0 <= k < n -> p k) -> p n) ->
forall n:int. 0 <= n -> p n
constant bound : int
lemma Induction_bound :
(forall n:int. bound <= n ->
(forall k:int. bound <= k < n -> p k) -> p n) ->
forall n:int. bound <= n -> p n
end
module HOInduction
use Int
let lemma induction (p: int -> bool)
requires { p 0 }
requires { forall n. 0 <= n >= 0 -> p n -> p (n+1) }
ensures { forall n. 0 <= n -> p n }
= let rec lemma f (n: int) requires { n >= 0 } ensures { p n } variant {n}
= if n > 0 then f (n-1) in f 0
end
(** {2 Fibonacci numbers} *)
module Fibonacci
use Int
let rec function fib (n: int) : int
requires { n >= 0 }
variant { n }
= if n = 0 then 0 else
if n = 1 then 1 else
fib (n-1) + fib (n-2)
end
module WFltof
use Int
use relations.WellFounded
type t
function f t : int
axiom f_nonneg: forall x. 0 <= f x
predicate ltof (x y: t) = f x < f y
let rec lemma acc_ltof (n: int)
requires { 0 <= n }
ensures { forall x. f x < n -> acc ltof x }
variant { n }
= if n > 0 then acc_ltof (n-1)
lemma wf_ltof: well_founded ltof
end
|