File: list.mlw

package info (click to toggle)
why3 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 45,020 kB
  • sloc: xml: 185,443; ml: 111,224; ansic: 3,998; sh: 2,578; makefile: 2,568; java: 865; python: 720; javascript: 290; lisp: 205; pascal: 173
file content (645 lines) | stat: -rw-r--r-- 12,337 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645

(** {1 Polymorphic Lists} *)

(** {2 Basic theory of polymorphic lists} *)

module List

  type list 'a = Nil | Cons 'a (list 'a)

  let predicate is_nil (l:list 'a)
    ensures { result <-> l = Nil }
  =
    match l with Nil -> true | Cons _ _ -> false end

end

(** {2 Length of a list} *)

module Length

  use int.Int
  use List

  let rec function length (l: list 'a) : int =
    match l with
    | Nil      -> 0
    | Cons _ r -> 1 + length r
    end

  lemma Length_nonnegative: forall l: list 'a. length l >= 0

  lemma Length_nil: forall l: list 'a. length l = 0 <-> l = Nil

end

(** {2 Membership in a list} *)

module Mem
  use List

  predicate mem (x: 'a) (l: list 'a) = match l with
    | Nil      -> false
    | Cons y r -> x = y \/ mem x r
    end

end

(** {2 Quantifiers on lists} *)

module Quant

  use List
  use Mem

  let rec function for_all (p: 'a -> bool) (l:list 'a) : bool
    ensures { result <-> forall x. mem x l -> p x }
  =
    match l with
    | Nil -> true
    | Cons x r -> p x && for_all p r
    end

  let rec function for_some (p: 'a -> bool) (l:list 'a) : bool
    ensures { result <-> exists x. mem x l /\ p x }
  =
    match l with
    | Nil -> false
    | Cons x r -> p x || for_some p r
    end

  let function mem (eq:'a -> 'a -> bool) (x:'a) (l:list 'a) : bool
    ensures  { result <-> exists y. mem y l /\ eq x y }
  =
    for_some (eq x) l

end


module Elements

  use set.Fset
  use List
  use Mem

  function elements (l: list 'a) : fset 'a =
    match l with
    | Nil -> empty
    | Cons x r -> add x (elements r)
    end

  lemma elements_mem:
    forall x: 'a, l: list 'a. mem x l <-> Fset.mem x (elements l)

end

(** {2 Nth element of a list} *)

module Nth

  use List
  use option.Option
  use int.Int

  let rec function nth (n: int) (l: list 'a) : option 'a =
    match l with
    | Nil      -> None
    | Cons x r -> if n = 0 then Some x else nth (n - 1) r
    end

end

module NthNoOpt

  use List
  use int.Int

  function nth (n: int) (l: list 'a) : 'a

  axiom nth_cons_0: forall x:'a, r:list 'a. nth 0 (Cons x r) = x
  axiom nth_cons_n: forall x:'a, r:list 'a, n:int.
    n > 0 -> nth n (Cons x r) = nth (n-1) r

end

module NthLength

  use int.Int
  use option.Option
  use List
  use export Nth
  use export Length

  lemma nth_none_1:
     forall l: list 'a, i: int. i < 0 -> nth i l = None

  lemma nth_none_2:
     forall l: list 'a, i: int. i >= length l -> nth i l = None

  lemma nth_none_3:
     forall l: list 'a, i: int. nth i l = None -> i < 0 \/ i >= length l

end

(** {2 Head and tail} *)

module HdTl

  use List
  use option.Option

  let function hd (l: list 'a) : option 'a = match l with
    | Nil      -> None
    | Cons h _ -> Some h
  end

  let function tl (l: list 'a) : option (list 'a) = match l with
    | Nil      -> None
    | Cons _ t -> Some t
  end

end

module HdTlNoOpt

  use List

  function hd (l: list 'a) : 'a

  axiom hd_cons: forall x:'a, r:list 'a. hd (Cons x r) = x

  function tl (l: list 'a) : list 'a

  axiom tl_cons: forall x:'a, r:list 'a. tl (Cons x r) = r

end

(** {2 Relation between head, tail, and nth} *)

module NthHdTl

  use int.Int
  use option.Option
  use List
  use Nth
  use HdTl

  lemma Nth_tl:
    forall l1 l2: list 'a. tl l1 = Some l2 ->
    forall i: int. i <> -1 -> nth i l2 = nth (i+1) l1

  lemma Nth0_head:
    forall l: list 'a. nth 0 l = hd l

end

(** {2 Appending two lists} *)

module Append

  use List

  let rec function (++) (l1 l2: list 'a) : list 'a =
    match l1 with
    | Nil -> l2
    | Cons x1 r1 -> Cons x1 (r1 ++ l2)
    end

  lemma Append_assoc:
    forall l1 [@induction] l2 l3: list 'a.
    l1 ++ (l2 ++ l3) = (l1 ++ l2) ++ l3

  lemma Append_l_nil:
    forall l: list 'a. l ++ Nil = l

  use Length
  use int.Int

  lemma Append_length:
    forall l1 [@induction] l2: list 'a. length (l1 ++ l2) = length l1 + length l2

  use Mem

  lemma mem_append:
    forall x: 'a, l1 [@induction] l2: list 'a.
    mem x (l1 ++ l2) <-> mem x l1 \/ mem x l2

  lemma mem_decomp:
    forall x: 'a, l: list 'a.
    mem x l -> exists l1 l2: list 'a. l = l1 ++ Cons x l2

end

module NthLengthAppend

  use int.Int
  use List
  use export NthLength
  use export Append

  lemma nth_append_1:
    forall l1 l2: list 'a, i: int.
    i < length l1 -> nth i (l1 ++ l2) = nth i l1

  lemma nth_append_2:
    forall l1 [@induction] l2: list 'a, i: int.
    length l1 <= i -> nth i (l1 ++ l2) = nth (i - length l1) l2

end

(** {2 Reversing a list} *)

module Reverse

  use List
  use Append

  let rec function reverse (l: list 'a) : list 'a =
    match l with
    | Nil      -> Nil
    | Cons x r -> reverse r ++ Cons x Nil
    end

  lemma reverse_append:
    forall l1 l2: list 'a, x: 'a.
    (reverse (Cons x l1)) ++ l2 = (reverse l1) ++ (Cons x l2)

  lemma reverse_cons:
    forall l: list 'a, x: 'a.
    reverse (Cons x l) = reverse l ++ Cons x Nil


  lemma cons_reverse:
    forall l: list 'a, x: 'a.
    Cons x (reverse l) = reverse (l ++ Cons x Nil)

  lemma reverse_reverse:
    forall l: list 'a. reverse (reverse l) = l

  use Mem

  lemma reverse_mem:
    forall l: list 'a, x: 'a. mem x l <-> mem x (reverse l)

  use Length

  lemma Reverse_length:
    forall l: list 'a. length (reverse l) = length l

end

(** {2 Reverse append} *)

module RevAppend

  use List

  let rec function rev_append (s t: list 'a) : list 'a =
    match s with
    | Cons x r -> rev_append r (Cons x t)
    | Nil -> t
    end

  use Append

  lemma rev_append_append_l:
    forall r [@induction] s t: list 'a.
      rev_append (r ++ s) t = rev_append s (rev_append r t)

  use int.Int
  use Length

  lemma rev_append_length:
    forall s [@induction] t: list 'a.
      length (rev_append s t) = length s + length t

  use Reverse

  lemma rev_append_def:
    forall r [@induction] s: list 'a. rev_append r s = reverse r ++ s

  lemma rev_append_append_r:
    forall r s t: list 'a.
      rev_append r (s ++ t) = rev_append (rev_append s r) t

end

(** {2 Zip} *)

module Combine

  use List

  let rec function combine (x: list 'a) (y: list 'b) : list ('a, 'b)
  = match x, y with
    | Cons x0 x, Cons y0 y -> Cons (x0, y0) (combine x y)
    | _ -> Nil
    end

end

(** {2 Sorted lists for some order as parameter} *)

module Sorted

  use List

  type t
  predicate le t t
  clone relations.Transitive with
    type t = t, predicate rel = le, axiom Trans

  inductive sorted (l: list t) =
    | Sorted_Nil:
        sorted Nil
    | Sorted_One:
        forall x: t. sorted (Cons x Nil)
    | Sorted_Two:
        forall x y: t, l: list t.
        le x y -> sorted (Cons y l) -> sorted (Cons x (Cons y l))

  use Mem

  lemma sorted_mem:
    forall x: t, l: list t.
    (forall y: t. mem y l -> le x y) /\ sorted l <-> sorted (Cons x l)

  use Append

  lemma sorted_append:
    forall  l1 [@induction] l2: list t.
    (sorted l1 /\ sorted l2 /\ (forall x y: t. mem x l1 -> mem y l2 -> le x y))
    <->
    sorted (l1 ++ l2)

end

(** {2 Sorted lists of integers} *)

module SortedInt

  use int.Int
  clone export Sorted with type t = int, predicate le = (<=), goal Transitive.Trans

end

module RevSorted

  type t
  predicate le t t
  clone relations.Transitive with
    type t = t, predicate rel = le, axiom Trans
  predicate ge (x y: t) = le y x

  use List

  clone Sorted as Incr with type t = t, predicate le = le, goal .
  clone Sorted as Decr with type t = t, predicate le = ge, goal .

  predicate compat (s t: list t) =
    match s, t with
    | Cons x _, Cons y _ -> le x y
    | _, _ -> true
    end

  use RevAppend

  lemma rev_append_sorted_incr:
    forall s [@induction] t: list t.
      Incr.sorted (rev_append s t) <->
        Decr.sorted s /\ Incr.sorted t /\ compat s t

  lemma rev_append_sorted_decr:
    forall s [@induction] t: list t.
      Decr.sorted (rev_append s t) <->
        Incr.sorted s /\ Decr.sorted t /\ compat t s

end

(** {2 Number of occurrences in a list} *)

module NumOcc

  use int.Int
  use List

  function num_occ (x: 'a) (l: list 'a) : int =
    match l with
    | Nil      -> 0
    | Cons y r -> (if x = y then 1 else 0) + num_occ x r
    end
  (** number of occurrences of `x` in `l` *)

  lemma Num_Occ_NonNeg: forall x:'a, l: list 'a. num_occ x l >= 0

  use Mem

  lemma Mem_Num_Occ :
    forall x: 'a, l: list 'a. mem x l <-> num_occ x l > 0

  use Append

  lemma Append_Num_Occ :
    forall x: 'a, l1 [@induction] l2: list 'a.
    num_occ x (l1 ++ l2) = num_occ x l1 + num_occ x l2

  use Reverse

  lemma reverse_num_occ :
    forall x: 'a, l: list 'a.
    num_occ x l = num_occ x (reverse l)

end

(** {2 Permutation of lists} *)

module Permut

  use NumOcc
  use List

  predicate permut (l1: list 'a) (l2: list 'a) =
    forall x: 'a. num_occ x l1 = num_occ x l2

  lemma Permut_refl: forall l: list 'a. permut l l

  lemma Permut_sym: forall l1 l2: list 'a. permut l1 l2 -> permut l2 l1

  lemma Permut_trans:
    forall l1 l2 l3: list 'a. permut l1 l2 -> permut l2 l3 -> permut l1 l3

  lemma Permut_cons:
    forall x: 'a, l1 l2: list 'a.
    permut l1 l2 -> permut (Cons x l1) (Cons x l2)

  lemma Permut_swap:
    forall x y: 'a, l: list 'a. permut (Cons x (Cons y l)) (Cons y (Cons x l))

  use Append

  lemma Permut_cons_append:
    forall x : 'a, l1 l2 : list 'a.
    permut (Cons x l1 ++ l2) (l1 ++ Cons x l2)

  lemma Permut_assoc:
    forall l1 l2 l3: list 'a.
    permut ((l1 ++ l2) ++ l3) (l1 ++ (l2 ++ l3))

  lemma Permut_append:
    forall l1 l2 k1 k2 : list 'a.
    permut l1 k1 -> permut l2 k2 -> permut (l1 ++ l2) (k1 ++ k2)

  lemma Permut_append_swap:
    forall l1 l2 : list 'a.
    permut (l1 ++ l2) (l2 ++ l1)

  use Mem

  lemma Permut_mem:
    forall x: 'a, l1 l2: list 'a. permut l1 l2 -> mem x l1 -> mem x l2

  use Length

  lemma Permut_length:
    forall l1 [@induction] l2: list 'a. permut l1 l2 -> length l1 = length l2

end

(** {2 List with pairwise distinct elements} *)

module Distinct

  use List
  use Mem

  inductive distinct (l: list 'a) =
    | distinct_zero: distinct (Nil: list 'a)
    | distinct_one : forall x:'a. distinct (Cons x Nil)
    | distinct_many:
        forall x:'a, l: list 'a.
        not (mem x l) -> distinct l -> distinct (Cons x l)

  use Append

  lemma distinct_append:
    forall l1 [@induction] l2: list 'a.
    distinct l1 -> distinct l2 -> (forall x:'a. mem x l1 -> not (mem x l2)) ->
    distinct (l1 ++ l2)

end

module Prefix

  use List
  use int.Int

  let rec function prefix (n: int) (l: list 'a) : list 'a =
    if n <= 0 then Nil else
    match l with
    | Nil -> Nil
    | Cons x r -> Cons x (prefix (n-1) r)
    end

end

module Sum

  use List
  use int.Int

  let rec function sum (l: list int) : int =
    match l with
    | Nil -> 0
    | Cons x r -> x + sum r
    end

end

(*
(** {2 Induction on lists} *)

module Induction

  use List

  (* type elt *)

  (* predicate p (list elt) *)

  axiom Induction:
    forall p: list 'a -> bool.
    p (Nil: list 'a) ->
    (forall x:'a. forall l:list 'a. p l -> p (Cons x l)) ->
    forall l:list 'a. p l

end
*)

(** {2 Maps as lists of pairs} *)

module Map

  use List

  function map (f: 'a -> 'b) (l: list 'a) : list 'b =
    match l with
    | Nil      -> Nil
    | Cons x r -> Cons (f x) (map f r)
    end
end

(** {2 Generic recursors on lists} *)

module FoldLeft

  use List

  function fold_left (f: 'b -> 'a -> 'b) (acc: 'b) (l: list 'a) : 'b =
    match l with
    | Nil      -> acc
    | Cons x r -> fold_left f (f acc x) r
    end

  use Append

  lemma fold_left_append:
    forall l1 [@induction] l2: list 'a, f: 'b -> 'a -> 'b, acc : 'b.
    fold_left f acc (l1++l2) = fold_left f (fold_left f acc l1) l2

end

module FoldRight

  use List

  function fold_right (f: 'a -> 'b -> 'b) (l: list 'a) (acc: 'b) : 'b =
    match l with
    | Nil      -> acc
    | Cons x r -> f x (fold_right f r acc)
    end

  use Append

  lemma fold_right_append:
    forall l1 [@induction] l2: list 'a, f: 'a -> 'b -> 'b, acc : 'b.
    fold_right f (l1++l2) acc = fold_right f l1 (fold_right f l2 acc)

end

(** {2 Importation of all list theories in one} *)

module ListRich

  use export List
  use export Length
  use export Mem
  use export Nth
  use export HdTl
  use export NthHdTl
  use export Append
  use export Reverse
  use export RevAppend
  use export NumOcc
  use export Permut

end