1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
|
(** {1 Arrays with bounded-size integers}
Note: We currently duplicate code to get the various modules below
but we should eventually be able to implement a single module and
then to clone it. *)
(** {2 Arrays with 32-bit indices} *)
module Array32
use int.Int
use mach.int.Int32
use map.Map as M
type array [@extraction:array] 'a = private {
mutable ghost elts : int -> 'a;
length : int32;
} invariant { 0 <= length }
function ([]) (a: array 'a) (i: int) : 'a = a.elts i
val ([]) (a: array 'a) (i: int32) : 'a
requires { [@expl:index in array bounds] 0 <= i < a.length }
ensures { result = a[i] }
val ([]<-) (a: array 'a) (i: int32) (v: 'a) : unit writes {a}
requires { [@expl:index in array bounds] 0 <= i < a.length }
ensures { a.elts = M.set (old a.elts) i v }
(** unsafe get/set operations with no precondition *)
exception OutOfBounds
let defensive_get (a: array 'a) (i: int32)
ensures { 0 <= i < a.length }
ensures { result = a[i] }
raises { OutOfBounds -> i < 0 \/ i >= a.length }
= if i < of_int 0 || i >= length a then raise OutOfBounds;
a[i]
let defensive_set (a: array 'a) (i: int32) (v: 'a)
ensures { 0 <= i < a.length }
ensures { a.elts = M.set (old a.elts) i v }
raises { OutOfBounds -> (i < 0 \/ i >= a.length) /\ a = old a }
= if i < of_int 0 || i >= length a then raise OutOfBounds;
a[i] <- v
val make [@extraction:array_make] (n: int32) (v: 'a) : array 'a
requires { [@expl:array creation size] n >= 0 }
ensures { forall i:int. 0 <= i < n -> result[i] = v }
ensures { result.length = n }
val append (a1: array 'a) (a2: array 'a) : array 'a
ensures { result.length = a1.length + a2.length }
ensures { forall i:int. 0 <= i < a1.length -> result[i] = a1[i] }
ensures { forall i:int. 0 <= i < a2.length ->
result[a1.length + i] = a2[i] }
val sub (a: array 'a) (ofs: int32) (len: int32) : array 'a
requires { 0 <= ofs /\ 0 <= len }
requires { ofs + len <= a.length }
ensures { result.length = len }
ensures { forall i:int. 0 <= i < len ->
result[i] = a[ofs + i] }
val copy (a: array 'a) : array 'a
ensures { result.length = a.length }
ensures { forall i:int. 0 <= i < result.length -> result[i] = a[i] }
val fill (a: array 'a) (ofs: int32) (len: int32) (v: 'a) : unit writes {a}
requires { 0 <= ofs /\ 0 <= len }
requires { ofs + len <= a.length }
ensures { forall i:int.
(0 <= i < ofs \/
ofs + len <= i < a.length) -> a[i] = (old a)[i] }
ensures { forall i:int. ofs <= i < ofs + len ->
a[i] = v }
val blit (a1: array 'a) (ofs1: int32)
(a2: array 'a) (ofs2: int32) (len: int32) : unit writes {a2}
requires { 0 <= ofs1 /\ 0 <= len }
requires { ofs1 + len <= a1.length }
requires { 0 <= ofs2 /\
ofs2 + len <= a2.length }
ensures { forall i:int.
(0 <= i < ofs2 \/
ofs2 + len <= i < a2.length) ->
a2[i] = (old a2)[i] }
ensures { forall i:int.
ofs2 <= i < ofs2 + len ->
a2[i] = a1[ofs1 + i - ofs2] }
val self_blit (a: array 'a) (ofs1: int32) (ofs2: int32) (len: int32) : unit
writes {a}
requires { 0 <= ofs1 /\ 0 <= len /\
ofs1 + len <= a.length }
requires { 0 <= ofs2 /\ ofs2 + len <= a.length }
ensures { forall i:int.
(0 <= i < ofs2 \/
ofs2 + len <= i < a.length) -> a[i] = (old a)[i] }
ensures { forall i:int.
ofs2 <= i < ofs2 + len ->
a[i] = (old a)[ofs1 + i - ofs2] }
end
(** {2 Arrays with 31-bit indices} *)
module Array31
use int.Int
use mach.int.Int31
use map.Map as M
type array 'a = private {
mutable ghost elts : int -> 'a;
length : int31;
} invariant { 0 <= length }
function ([]) (a: array 'a) (i: int) : 'a = a.elts i
val ([]) (a: array 'a) (i: int31) : 'a
requires { [@expl:index in array bounds] 0 <= i < a.length }
ensures { result = a[i] }
val ([]<-) (a: array 'a) (i: int31) (v: 'a) : unit writes {a}
requires { [@expl:index in array bounds] 0 <= i < a.length }
ensures { a.elts = M.set (old a.elts) i v }
(** unsafe get/set operations with no precondition *)
exception OutOfBounds
let defensive_get (a: array 'a) (i: int31)
ensures { 0 <= i < a.length }
ensures { result = a[i] }
raises { OutOfBounds -> i < 0 \/ i >= a.length }
= if i < of_int 0 || i >= length a then raise OutOfBounds;
a[i]
let defensive_set (a: array 'a) (i: int31) (v: 'a)
ensures { 0 <= i < a.length }
ensures { a.elts = M.set (old a.elts) i v }
raises { OutOfBounds -> (i < 0 \/ i >= a.length) /\ a = old a }
= if i < of_int 0 || i >= length a then raise OutOfBounds;
a[i] <- v
val make (n: int31) (v: 'a) : array 'a
requires { [@expl:array creation size] n >= 0 }
ensures { forall i:int. 0 <= i < n -> result[i] = v }
ensures { result.length = n }
val append (a1: array 'a) (a2: array 'a) : array 'a
ensures { result.length = a1.length + a2.length }
ensures { forall i:int. 0 <= i < a1.length -> result[i] = a1[i] }
ensures { forall i:int. 0 <= i < a2.length ->
result[a1.length + i] = a2[i] }
val sub (a: array 'a) (ofs: int31) (len: int31) : array 'a
requires { 0 <= ofs /\ 0 <= len }
requires { ofs + len <= a.length }
ensures { result.length = len }
ensures { forall i:int. 0 <= i < len ->
result[i] = a[ofs + i] }
val copy (a: array 'a) : array 'a
ensures { result.length = a.length }
ensures { forall i:int. 0 <= i < result.length -> result[i] = a[i] }
val fill (a: array 'a) (ofs: int31) (len: int31) (v: 'a) : unit writes {a}
requires { 0 <= ofs /\ 0 <= len }
requires { ofs + len <= a.length }
ensures { forall i:int.
(0 <= i < ofs \/
ofs + len <= i < a.length) -> a[i] = (old a)[i] }
ensures { forall i:int. ofs <= i < ofs + len ->
a[i] = v }
val blit (a1: array 'a) (ofs1: int31)
(a2: array 'a) (ofs2: int31) (len: int31) : unit writes {a2}
requires { 0 <= ofs1 /\ 0 <= len }
requires { ofs1 + len <= a1.length }
requires { 0 <= ofs2 /\
ofs2 + len <= a2.length }
ensures { forall i:int.
(0 <= i < ofs2 \/
ofs2 + len <= i < a2.length) ->
a2[i] = (old a2)[i] }
ensures { forall i:int.
ofs2 <= i < ofs2 + len ->
a2[i] = a1[ofs1 + i - ofs2] }
val self_blit (a: array 'a) (ofs1: int31) (ofs2: int31) (len: int31) : unit
writes {a}
requires { 0 <= ofs1 /\ 0 <= len /\
ofs1 + len <= a.length }
requires { 0 <= ofs2 /\ ofs2 + len <= a.length }
ensures { forall i:int.
(0 <= i < ofs2 \/
ofs2 + len <= i < a.length) -> a[i] = (old a)[i] }
ensures { forall i:int.
ofs2 <= i < ofs2 + len ->
a[i] = (old a)[ofs1 + i - ofs2] }
end
(** {2 Arrays with 63-bit indices}
Contrary to arrays from module `Array`, the contents of the array
is here modeled as a sequence. It makes it easier to resuse existing
functions over sequences. (We may consider doing this for regular arrays
as well in the future.)
A coercion is declared so that an array `a` can be used
as a sequence. As a consequence, notation `a[i]` in the logic is
directly that of sequences. You have to import module `seq.Seq` to be
able to use it.
*)
module Array63
use int.Int
use mach.int.Int63
use seq.Seq
type array 'a = private {
mutable ghost elts : seq 'a;
length : int63;
} invariant { 0 <= length = Seq.length elts }
meta coercion function elts
val ([]) (a: array 'a) (i: int63) : 'a
requires { [@expl:index in array bounds] 0 <= i < a.length }
ensures { result = a[i] }
val ([]<-) (a: array 'a) (i: int63) (v: 'a) : unit writes {a}
requires { [@expl:index in array bounds] 0 <= i < a.length }
ensures { a.elts = (old a.elts)[i <- v] }
(** unsafe get/set operations with no precondition *)
exception OutOfBounds
let defensive_get (a: array 'a) (i: int63)
ensures { 0 <= i < a.length }
ensures { result = a[i] }
raises { OutOfBounds -> i < 0 \/ i >= a.length }
= if i < 0 || i >= length a then raise OutOfBounds;
a[i]
let defensive_set (a: array 'a) (i: int63) (v: 'a)
ensures { 0 <= i < a.length }
ensures { a.elts = (old a.elts)[i <- v] }
raises { OutOfBounds -> (i < 0 \/ i >= a.length) /\ a = old a }
= if i < 0 || i >= length a then raise OutOfBounds;
a[i] <- v
val make (n: int63) (v: 'a) : array 'a
requires { [@expl:array creation size] n >= 0 }
ensures { forall i:int. 0 <= i < n -> result[i] = v }
ensures { result.length = n }
val append (a1: array 'a) (a2: array 'a) : array 'a
ensures { result.length = a1.length + a2.length }
ensures { forall i:int. 0 <= i < a1.length -> result[i] = a1[i] }
ensures { forall i:int. 0 <= i < a2.length ->
result[a1.length + i] = a2[i] }
val sub (a: array 'a) (ofs: int63) (len: int63) : array 'a
requires { 0 <= ofs /\ 0 <= len }
requires { ofs + len <= a.length }
ensures { result.length = len }
ensures { forall i:int. 0 <= i < len -> result[i] = a[ofs + i] }
val copy (a: array 'a) : array 'a
ensures { result.length = a.length }
ensures { forall i:int. 0 <= i < result.length -> result[i] = a[i] }
val fill (a: array 'a) (ofs: int63) (len: int63) (v: 'a) : unit
writes { a }
requires { 0 <= ofs /\ 0 <= len }
requires { ofs + len <= a.length }
ensures { forall i:int.
(0 <= i < ofs \/
ofs + len <= i < a.length) -> a[i] = (old a)[i] }
ensures { forall i:int. ofs <= i < ofs + len ->
a[i] = v }
val blit (a1: array 'a) (ofs1: int63)
(a2: array 'a) (ofs2: int63) (len: int63) : unit writes {a2}
requires { 0 <= ofs1 /\ 0 <= len }
requires { ofs1 + len <= a1.length }
requires { 0 <= ofs2 /\
ofs2 + len <= a2.length }
ensures { forall i:int.
(0 <= i < ofs2 \/
ofs2 + len <= i < a2.length) ->
a2[i] = (old a2)[i] }
ensures { forall i:int.
ofs2 <= i < ofs2 + len ->
a2[i] = a1[ofs1 + i - ofs2] }
val self_blit (a: array 'a) (ofs1: int63) (ofs2: int63) (len: int63) : unit
writes {a}
requires { 0 <= ofs1 /\ 0 <= len /\
ofs1 + len <= a.length }
requires { 0 <= ofs2 /\ ofs2 + len <= a.length }
ensures { forall i:int.
(0 <= i < ofs2 \/
ofs2 + len <= i < a.length) -> a[i] = (old a)[i] }
ensures { forall i:int.
ofs2 <= i < ofs2 + len ->
a[i] = (old a)[ofs1 + i - ofs2] }
let init (n: int63) (f: int63 -> 'a) : array 'a
requires { [@expl:array creation size] n >= 0 }
ensures { forall i: int63. 0 <= i < n -> result[i] = f i }
ensures { length result = n }
= let a = make n (f 0) in
for i = 1 to n - 1 do
invariant { forall j: int63. 0 <= j < i -> a[j] = f j }
a[i] <- f i
done;
a
end
module Array63Exchange
use int.Int
use mach.int.Int63
use Array63
use seq.Exchange as SE
predicate exchange (a1 a2: array 'a) (i j: int) =
SE.exchange a1.elts a2.elts i j
(** `exchange a1 a2 i j` means that arrays `a1` and `a2` only differ
by the swapping of elements at indices `i` and `j` *)
end
module Array63Swap
use int.Int
use mach.int.Int63
use Array63
use export Array63Exchange
let swap (a:array 'a) (i j:int63) : unit
requires { 0 <= i < length a /\ 0 <= j < length a }
writes { a }
ensures { exchange (old a) a i j }
= let v = a[i] in
a[i] <- a[j];
a[j] <- v
end
module Array63Permut
use int.Int
use mach.int.Int63
use Array63
use seq.Seq
use seq.SeqEq
use seq.Permut as SP
use Array63Exchange
predicate permut (a1 a2: array 'a) (l u: int) =
SP.permut a1.elts a2.elts l u
(** `permut a1 a2 l u` is true when the segment
`a1(l..u-1)` is a permutation of the segment `a2(l..u-1)`.
Values outside of the interval `(l..u-1)` are ignored. *)
predicate array_eq (a1 a2: array 'a) (l u: int) =
seq_eq_sub a1.elts a2.elts l u
predicate permut_sub (a1 a2: array 'a) (l u: int) =
seq_eq_sub a1.elts a2.elts 0 l /\
permut a1 a2 l u /\
seq_eq_sub a1.elts a2.elts u (length a1)
(** `permut_sub a1 a2 l u` is true when the segment
`a1(l..u-1)` is a permutation of the segment `a2(l..u-1)`
and values outside of the interval `(l..u-1)` are equal. *)
predicate permut_all (a1 a2: array 'a) =
SP.permut a1.elts a2.elts 0 a1.length
(** `permut_all a1 a2 l u` is true when array `a1` is a permutation
of array `a2`. *)
(** we can always enlarge the interval *)
lemma permut_sub_weakening:
forall a1 a2: array 'a, l1 u1 l2 u2: int.
permut_sub a1 a2 l1 u1 -> 0 <= l2 <= l1 -> u1 <= u2 <= length a1 ->
permut_sub a1 a2 l2 u2
lemma exchange_permut_sub:
forall a1 a2: array 'a, i j l u: int.
exchange a1 a2 i j -> l <= i < u -> l <= j < u ->
0 <= l -> u <= length a1 -> permut_sub a1 a2 l u
lemma exchange_permut_all:
forall a1 a2: array 'a, i j: int.
exchange a1 a2 i j -> permut_all a1 a2
end
(** {2 Arrays of 63-bit integers}
Here the model is simply a sequence of integers (of type `int`),
instead of being a sequence of values of type `int63`.
As a consequence, we have to provide the additional information
that each of the element fits within the bounds of 63-bit integers.
Caveat: type `array63` below is not compatible with type
`Array63.array int63`.
*)
module ArrayInt63
use int.Int
use mach.int.Int63
use seq.Seq
type array63 = private {
mutable ghost elts: seq int;
ghost size: int;
} invariant { 0 <= size = length elts <= max_int }
invariant { forall i. 0 <= i < length elts -> in_bounds elts[i] }
meta coercion function elts
val length (a: array63) : int63
ensures { to_int result = a.length }
val ([]) (a: array63) (i: int63) : int63
requires { [@expl:index in array bounds] 0 <= i < a.length }
ensures { to_int result = a[i] }
val ([]<-) (a: array63) (i: int63) (v: int63) : unit
requires { [@expl:index in array bounds] 0 <= i < a.length }
writes { a }
ensures { a.elts = (old a.elts)[i <- to_int v] }
val ghost set (a: array63) (i: int63) (v: int63) : array63
requires { [@expl:index in array bounds] 0 <= i < a.length }
ensures { result.length = a.length }
ensures { result.elts = a.elts[i <- to_int v] }
val make (n: int63) (v: int63) : array63
requires { [@expl:array creation size] n >= 0 }
ensures { forall i. 0 <= i < n -> result[i] = to_int v }
ensures { result.length = n }
val copy (a: array63) : array63
ensures { result.length = a.length }
ensures { forall i. 0 <= i < result.length -> result[i] = a[i] }
let sub (a: array63) (ofs: int63) (len: int63) : array63
requires { 0 <= ofs /\ 0 <= len /\ ofs + len <= length a }
ensures { length result = len }
ensures { forall i. 0 <= i < len -> result[i] = a[ofs + i] }
=
let b = make len 0 in
for i = 0 to len - 1 do
invariant { forall k. 0 <= k < i -> b[k] = a[ofs+k] }
b[i] <- a[ofs + i];
done;
b
use seq.Exchange
let swap (a:array63) (i j:int63) : unit
requires { 0 <= i < length a /\ 0 <= j < length a }
writes { a }
ensures { exchange (old a) a i j }
= let v = a[i] in
a[i] <- a[j];
a[j] <- v
let init (n: int63) (f: int63 -> int63) : array63
requires { [@expl:array creation size] n >= 0 }
ensures { forall i: int63. 0 <= i < n -> result[i] = f i }
ensures { length result = n }
=
let a = make n 0 in
for i = 0 to n - 1 do
invariant { forall k: int63. 0 <= k < i -> a[k] = f k }
a[i] <- f i
done;
a
end
|