File: float.mlw

package info (click to toggle)
why3 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 45,020 kB
  • sloc: xml: 185,443; ml: 111,224; ansic: 3,998; sh: 2,578; makefile: 2,568; java: 865; python: 720; javascript: 290; lisp: 205; pascal: 173
file content (197 lines) | stat: -rw-r--r-- 6,246 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
(** {1 Floating-Point Computations with overflow check}

The following functions could be used to encode floating-point
operations in programs, in the case where one wants to forbids
overflows.

Each function comes with two pre-conditions and two post-conditions,
one using interpretation in real numbers, one using the predicate
`t'isFinite` from the `ieee_float` library. The second form should be
better with a prover that has built-in support for floating-point
numbers.

*)

(** {2 Single-precision floats} *)

module Single

  use real.RealInfix
  use export ieee_float.Float32

  predicate add_pre_ieee (x:t) (y:t) =
    t'isFinite (x .+ y)

  predicate add_post_ieee (x:t) (y:t) (r:t) =
    r = x .+ y

  predicate add_pre_real (x:t) (y:t) =
    no_overflow RNE (t'real x +. t'real y)

  predicate add_post_real (x:t) (y:t) (r:t) =
    t'real r = round RNE (t'real x +. t'real  y)

  val safe_add (x y: t) : t
    requires { [@expl:finite floating-point number] t'isFinite x }
    requires { [@expl:finite floating-point number] t'isFinite y }
    requires { [@expl:floating-point overflow]
               add_pre_ieee x y \/ add_pre_real x y }
    ensures  { t'isFinite result }
    ensures  { add_post_ieee x y result /\ add_post_real x y result }

  predicate sub_pre_ieee (x:t) (y:t) =
    t'isFinite (x .- y)

  predicate sub_post_ieee (x:t) (y:t) (r:t) =
    r =  x .- y

  predicate sub_pre_real (x:t) (y:t) =
    no_overflow RNE (t'real x -. t'real y)

  predicate sub_post_real (x:t) (y:t) (r:t) =
    t'real r = round RNE (t'real x -. t'real  y)

  val safe_sub (x y: t) : t
    requires { [@expl:finite floating-point number] t'isFinite x }
    requires { [@expl:finite floating-point number] t'isFinite y }
    requires { [@expl:floating-point overflow]
               sub_pre_ieee x y \/ sub_pre_real x y }
    ensures  { t'isFinite result }
    ensures  { sub_post_ieee x y result /\ sub_post_real x y result }

  predicate mul_pre_ieee (x:t) (y:t) =
    t'isFinite (x .* y)

  predicate mul_post_ieee (x:t) (y:t) (r:t) =
    r =  x .* y

  predicate mul_pre_real (x:t) (y:t) =
    no_overflow RNE (t'real x *. t'real y)

  predicate mul_post_real (x:t) (y:t) (r:t) =
    t'real r = round RNE (t'real x *. t'real  y)

  val safe_mul (x y: t) : t
    requires { [@expl:finite floating-point number] t'isFinite x }
    requires { [@expl:finite floating-point number] t'isFinite y }
    requires { [@expl:floating-point overflow]
               mul_pre_ieee x y \/ mul_pre_real x y }
    ensures  { t'isFinite result }
    ensures  { mul_post_ieee x y result /\ mul_post_real x y result }

  predicate div_pre_ieee (x:t) (y:t) =
    t'isFinite (x ./ y)

  predicate div_post_ieee (x:t) (y:t) (r:t) =
    r =  x ./ y

  predicate div_pre_real (x:t) (y:t) =
    no_overflow RNE (t'real x /. t'real y)

  predicate div_post_real (x:t) (y:t) (r:t) =
    t'real r = round RNE (t'real x /. t'real  y)

  val safe_div (x y: t) : t
    requires { [@expl:finite floating-point number] t'isFinite x }
    requires { [@expl:finite floating-point number] t'isFinite y }
    requires { [@expl:non-zero floating-point number] not (is_zero y) }
    requires { [@expl:floating-point overflow]
               div_pre_ieee x y \/ div_pre_real x y }
    ensures  { t'isFinite result }
    ensures  { div_post_ieee x y result /\ div_post_real x y result }


end



(** {2 Double-precision floats} *)

module Double

  use real.RealInfix
  use export ieee_float.Float64

  predicate add_pre_ieee (x:t) (y:t) =
    t'isFinite (x .+ y)

  predicate add_post_ieee (x:t) (y:t) (r:t) =
    r =  x .+ y

  predicate add_pre_real (x:t) (y:t) =
    no_overflow RNE (t'real x +. t'real y)

  predicate add_post_real (x:t) (y:t) (r:t) =
    t'real r = round RNE (t'real x +. t'real  y)

  val safe_add (x y: t) : t
    requires { [@expl:finite floating-point number] t'isFinite x }
    requires { [@expl:finite floating-point number] t'isFinite y }
    requires { [@expl:floating-point overflow]
               add_pre_ieee x y \/ add_pre_real x y }
    ensures  { t'isFinite result }
    ensures  { add_post_ieee x y result /\ add_post_real x y result }

  predicate sub_pre_ieee (x:t) (y:t) =
    t'isFinite (x .- y)

  predicate sub_post_ieee (x:t) (y:t) (r:t) =
    r =  x .- y

  predicate sub_pre_real (x:t) (y:t) =
    no_overflow RNE (t'real x -. t'real y)

  predicate sub_post_real (x:t) (y:t) (r:t) =
    t'real r = round RNE (t'real x -. t'real  y)

  val safe_sub (x y: t) : t
    requires { [@expl:finite floating-point number] t'isFinite x }
    requires { [@expl:finite floating-point number] t'isFinite y }
    requires { [@expl:floating-point overflow]
               sub_pre_ieee x y \/ sub_pre_real x y }
    ensures  { t'isFinite result }
    ensures  { sub_post_ieee x y result /\ sub_post_real x y result }

  predicate mul_pre_ieee (x:t) (y:t) =
    t'isFinite (x .* y)

  predicate mul_post_ieee (x:t) (y:t) (r:t) =
    r =  x .* y

  predicate mul_pre_real (x:t) (y:t) =
    no_overflow RNE (t'real x *. t'real y)

  predicate mul_post_real (x:t) (y:t) (r:t) =
    t'real r = round RNE (t'real x *. t'real  y)

  val safe_mul (x y: t) : t
    requires { [@expl:finite floating-point number] t'isFinite x }
    requires { [@expl:finite floating-point number] t'isFinite y }
    requires { [@expl:floating-point overflow]
               mul_pre_ieee x y \/ mul_pre_real x y }
    ensures  { t'isFinite result }
    ensures  { mul_post_ieee x y result /\ mul_post_real x y result }

  predicate div_pre_ieee (x:t) (y:t) =
    t'isFinite (x ./ y)

  predicate div_post_ieee (x:t) (y:t) (r:t) =
    r =  x ./ y

  predicate div_pre_real (x:t) (y:t) =
    no_overflow RNE (t'real x /. t'real y)

  predicate div_post_real (x:t) (y:t) (r:t) =
    t'real r = round RNE (t'real x /. t'real  y)

  val safe_div (x y: t) : t
    requires { [@expl:finite floating-point number] t'isFinite x }
    requires { [@expl:finite floating-point number] t'isFinite y }
    requires { [@expl:non-zero floating-point number] not (is_zero y) }
    requires { [@expl:floating-point overflow]
               div_pre_ieee x y \/ div_pre_real x y }
    ensures  { t'isFinite result }
    ensures  { div_post_ieee x y result /\ div_post_real x y result }


end