1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
(** {1 Floating-Point Computations with overflow check}
The following functions could be used to encode floating-point
operations in programs, in the case where one wants to forbids
overflows.
Each function comes with two pre-conditions and two post-conditions,
one using interpretation in real numbers, one using the predicate
`t'isFinite` from the `ieee_float` library. The second form should be
better with a prover that has built-in support for floating-point
numbers.
*)
(** {2 Single-precision floats} *)
module Single
use real.RealInfix
use export ieee_float.Float32
predicate add_pre_ieee (x:t) (y:t) =
t'isFinite (x .+ y)
predicate add_post_ieee (x:t) (y:t) (r:t) =
r = x .+ y
predicate add_pre_real (x:t) (y:t) =
no_overflow RNE (t'real x +. t'real y)
predicate add_post_real (x:t) (y:t) (r:t) =
t'real r = round RNE (t'real x +. t'real y)
val safe_add (x y: t) : t
requires { [@expl:finite floating-point number] t'isFinite x }
requires { [@expl:finite floating-point number] t'isFinite y }
requires { [@expl:floating-point overflow]
add_pre_ieee x y \/ add_pre_real x y }
ensures { t'isFinite result }
ensures { add_post_ieee x y result /\ add_post_real x y result }
predicate sub_pre_ieee (x:t) (y:t) =
t'isFinite (x .- y)
predicate sub_post_ieee (x:t) (y:t) (r:t) =
r = x .- y
predicate sub_pre_real (x:t) (y:t) =
no_overflow RNE (t'real x -. t'real y)
predicate sub_post_real (x:t) (y:t) (r:t) =
t'real r = round RNE (t'real x -. t'real y)
val safe_sub (x y: t) : t
requires { [@expl:finite floating-point number] t'isFinite x }
requires { [@expl:finite floating-point number] t'isFinite y }
requires { [@expl:floating-point overflow]
sub_pre_ieee x y \/ sub_pre_real x y }
ensures { t'isFinite result }
ensures { sub_post_ieee x y result /\ sub_post_real x y result }
predicate mul_pre_ieee (x:t) (y:t) =
t'isFinite (x .* y)
predicate mul_post_ieee (x:t) (y:t) (r:t) =
r = x .* y
predicate mul_pre_real (x:t) (y:t) =
no_overflow RNE (t'real x *. t'real y)
predicate mul_post_real (x:t) (y:t) (r:t) =
t'real r = round RNE (t'real x *. t'real y)
val safe_mul (x y: t) : t
requires { [@expl:finite floating-point number] t'isFinite x }
requires { [@expl:finite floating-point number] t'isFinite y }
requires { [@expl:floating-point overflow]
mul_pre_ieee x y \/ mul_pre_real x y }
ensures { t'isFinite result }
ensures { mul_post_ieee x y result /\ mul_post_real x y result }
predicate div_pre_ieee (x:t) (y:t) =
t'isFinite (x ./ y)
predicate div_post_ieee (x:t) (y:t) (r:t) =
r = x ./ y
predicate div_pre_real (x:t) (y:t) =
no_overflow RNE (t'real x /. t'real y)
predicate div_post_real (x:t) (y:t) (r:t) =
t'real r = round RNE (t'real x /. t'real y)
val safe_div (x y: t) : t
requires { [@expl:finite floating-point number] t'isFinite x }
requires { [@expl:finite floating-point number] t'isFinite y }
requires { [@expl:non-zero floating-point number] not (is_zero y) }
requires { [@expl:floating-point overflow]
div_pre_ieee x y \/ div_pre_real x y }
ensures { t'isFinite result }
ensures { div_post_ieee x y result /\ div_post_real x y result }
end
(** {2 Double-precision floats} *)
module Double
use real.RealInfix
use export ieee_float.Float64
predicate add_pre_ieee (x:t) (y:t) =
t'isFinite (x .+ y)
predicate add_post_ieee (x:t) (y:t) (r:t) =
r = x .+ y
predicate add_pre_real (x:t) (y:t) =
no_overflow RNE (t'real x +. t'real y)
predicate add_post_real (x:t) (y:t) (r:t) =
t'real r = round RNE (t'real x +. t'real y)
val safe_add (x y: t) : t
requires { [@expl:finite floating-point number] t'isFinite x }
requires { [@expl:finite floating-point number] t'isFinite y }
requires { [@expl:floating-point overflow]
add_pre_ieee x y \/ add_pre_real x y }
ensures { t'isFinite result }
ensures { add_post_ieee x y result /\ add_post_real x y result }
predicate sub_pre_ieee (x:t) (y:t) =
t'isFinite (x .- y)
predicate sub_post_ieee (x:t) (y:t) (r:t) =
r = x .- y
predicate sub_pre_real (x:t) (y:t) =
no_overflow RNE (t'real x -. t'real y)
predicate sub_post_real (x:t) (y:t) (r:t) =
t'real r = round RNE (t'real x -. t'real y)
val safe_sub (x y: t) : t
requires { [@expl:finite floating-point number] t'isFinite x }
requires { [@expl:finite floating-point number] t'isFinite y }
requires { [@expl:floating-point overflow]
sub_pre_ieee x y \/ sub_pre_real x y }
ensures { t'isFinite result }
ensures { sub_post_ieee x y result /\ sub_post_real x y result }
predicate mul_pre_ieee (x:t) (y:t) =
t'isFinite (x .* y)
predicate mul_post_ieee (x:t) (y:t) (r:t) =
r = x .* y
predicate mul_pre_real (x:t) (y:t) =
no_overflow RNE (t'real x *. t'real y)
predicate mul_post_real (x:t) (y:t) (r:t) =
t'real r = round RNE (t'real x *. t'real y)
val safe_mul (x y: t) : t
requires { [@expl:finite floating-point number] t'isFinite x }
requires { [@expl:finite floating-point number] t'isFinite y }
requires { [@expl:floating-point overflow]
mul_pre_ieee x y \/ mul_pre_real x y }
ensures { t'isFinite result }
ensures { mul_post_ieee x y result /\ mul_post_real x y result }
predicate div_pre_ieee (x:t) (y:t) =
t'isFinite (x ./ y)
predicate div_post_ieee (x:t) (y:t) (r:t) =
r = x ./ y
predicate div_pre_real (x:t) (y:t) =
no_overflow RNE (t'real x /. t'real y)
predicate div_post_real (x:t) (y:t) (r:t) =
t'real r = round RNE (t'real x /. t'real y)
val safe_div (x y: t) : t
requires { [@expl:finite floating-point number] t'isFinite x }
requires { [@expl:finite floating-point number] t'isFinite y }
requires { [@expl:non-zero floating-point number] not (is_zero y) }
requires { [@expl:floating-point overflow]
div_pre_ieee x y \/ div_pre_real x y }
ensures { t'isFinite result }
ensures { div_post_ieee x y result /\ div_post_real x y result }
end
|