1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
(** {1 Theory of maps} *)
(** {2 Generic Maps} *)
module Map
type map 'a 'b = 'a -> 'b
let function get (f: map 'a 'b) (x: 'a) : 'b = f x
let ghost function set (f: map 'a 'b) (x: 'a) (v: 'b) : map 'a 'b =
fun y -> if pure {y = x} then v else f y
(** syntactic sugar *)
let function ([]) (f: map 'a 'b) (x: 'a) : 'b = f x
let ghost function ([<-]) (f: map 'a 'b) (x: 'a) (v: 'b) : map 'a 'b = set f x v
end
module Const
use Map
let function const (v: 'b) : map 'a 'b = fun _ -> v
end
module MapExt
predicate (==) (m1 m2: 'a -> 'b) = forall x: 'a. m1 x = m2 x
lemma extensionality:
forall m1 m2: 'a -> 'b. m1 == m2 -> m1 = m2
(* This lemma is actually provable in Why3, because of how
eliminate_epsilon handles equality to a lambda-term. *)
meta extensionality predicate (==)
end
(** {2 Sorted Maps (indexed by integers)} *)
module MapSorted
use int.Int
use Map
type elt
predicate le elt elt
predicate sorted_sub (a : map int elt) (l u : int) =
forall i1 i2 : int. l <= i1 <= i2 < u -> le a[i1] a[i2]
(** `sorted_sub a l u` is true whenever the array segment `a(l..u-1)`
is sorted w.r.t order relation `le` *)
end
(** {2 Maps Equality (indexed by integers)} *)
module MapEq
use int.Int
use Map
predicate map_eq_sub (a1 a2 : map int 'a) (l u : int) =
forall i:int. l <= i < u -> a1[i] = a2[i]
end
module MapExchange
use int.Int
use Map
predicate exchange (a1 a2: map int 'a) (l u i j: int) =
l <= i < u /\ l <= j < u /\
a1[i] = a2[j] /\ a1[j] = a2[i] /\
(forall k:int. l <= k < u -> k <> i -> k <> j -> a1[k] = a2[k])
lemma exchange_set :
forall a: map int 'a, l u i j: int.
l <= i < u -> l <= j < u ->
exchange a a[i <- a[j]][j <- a[i]] l u i j
end
(** {2 Sum of elements of a map (indexed by integers)} *)
module MapSum
use int.Int
use int.Sum as S
use Map
(** `sum m l h` is the sum of `m[i]` for `l <= i < h` *)
function sum (m: map int int) (l h: int) : int = S.sum (get m) l h
end
(** {2 Number of occurrences} *)
(* TODO: we could define Occ using theory int.NumOf *)
module Occ
use int.Int
use Map
function occ (v: 'a) (m: map int 'a) (l u: int) : int
(** number of occurrences of `v` in `m` between `l` included and `u` excluded *)
axiom occ_empty:
forall v: 'a, m: map int 'a, l u: int.
u <= l -> occ v m l u = 0
axiom occ_right_no_add:
forall v: 'a, m: map int 'a, l u: int.
l < u -> m[u-1] <> v -> occ v m l u = occ v m l (u-1)
axiom occ_right_add:
forall v: 'a, m: map int 'a, l u: int.
l < u -> m[u-1] = v -> occ v m l u = 1 + occ v m l (u-1)
lemma occ_left_no_add:
forall v: 'a, m: map int 'a, l u: int.
l < u -> m[l] <> v -> occ v m l u = occ v m (l+1) u
lemma occ_left_add:
forall v: 'a, m: map int 'a, l u: int.
l < u -> m[l] = v -> occ v m l u = 1 + occ v m (l+1) u
lemma occ_bounds:
forall v: 'a, m: map int 'a, l u: int.
l <= u -> 0 <= occ v m l u <= u - l
(* direct when l>=u, by induction on u when l <= u *)
lemma occ_append:
forall v: 'a, m: map int 'a, l mid u: int.
l <= mid <= u -> occ v m l u = occ v m l mid + occ v m mid u
(* by induction on u *)
lemma occ_neq:
forall v: 'a, m: map int 'a, l u: int.
(forall i: int. l <= i < u -> m[i] <> v) -> occ v m l u = 0
(* by induction on u *)
lemma occ_exists:
forall v: 'a, m: map int 'a, l u: int.
occ v m l u > 0 -> exists i: int. l <= i < u /\ m[i] = v
lemma occ_pos:
forall m: map int 'a, l u i: int.
l <= i < u -> occ m[i] m l u > 0
lemma occ_eq:
forall v: 'a, m1 m2: map int 'a, l u: int.
(forall i: int. l <= i < u -> m1[i] = m2[i]) -> occ v m1 l u = occ v m2 l u
(* by induction on u *)
lemma occ_exchange :
forall m: map int 'a, l u i j: int, x y z: 'a.
l <= i < u -> l <= j < u -> i <> j ->
occ z m[i <- x][j <- y] l u =
occ z m[i <- y][j <- x] l u
end
module MapPermut
use int.Int
use Map
use Occ
predicate permut (m1 m2: map int 'a) (l u: int) =
forall v: 'a. occ v m1 l u = occ v m2 l u
lemma permut_trans: (* provable, yet useful *)
forall a1 a2 a3 : map int 'a. forall l u : int.
permut a1 a2 l u -> permut a2 a3 l u -> permut a1 a3 l u
lemma permut_exists :
forall a1 a2: map int 'a, l u i: int.
permut a1 a2 l u -> l <= i < u ->
exists j: int. l <= j < u /\ a1[j] = a2[i]
end
(** {2 Injectivity and surjectivity for maps (indexed by integers)} *)
module MapInjection
use int.Int
use export Map
predicate injective (a: map int int) (n: int) =
forall i j: int. 0 <= i < n -> 0 <= j < n -> i <> j -> a[i] <> a[j]
(** `injective a n` is true when `a` is an injection
on the domain `(0..n-1)` *)
predicate surjective (a: map int int) (n: int) =
forall i: int. 0 <= i < n -> exists j: int. (0 <= j < n /\ a[j] = i)
(** `surjective a n` is true when `a` is a surjection
from `(0..n-1)` to `(0..n-1)` *)
predicate range (a: map int int) (n: int) =
forall i: int. 0 <= i < n -> 0 <= a[i] < n
(** `range a n` is true when `a` maps the domain
`(0..n-1)` into `(0..n-1)` *)
lemma injective_surjective:
forall a: map int int, n: int.
injective a n -> range a n -> surjective a n
(** main lemma: an injection on `(0..n-1)` that
ranges into `(0..n-1)` is also a surjection *)
use Occ
lemma injection_occ:
forall m: map int int, n: int.
injective m n <-> forall v:int. (occ v m 0 n <= 1)
end
|