File: real.mlw

package info (click to toggle)
why3 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 45,020 kB
  • sloc: xml: 185,443; ml: 111,224; ansic: 3,998; sh: 2,578; makefile: 2,568; java: 865; python: 720; javascript: 290; lisp: 205; pascal: 173
file content (452 lines) | stat: -rw-r--r-- 11,047 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452

(** {1 Theory of reals}

This file provides the basic theory of real numbers, and several
additional theories for classical real functions.

*)

(** {2 Real numbers and the basic unary and binary operators} *)

module Real

  constant zero : real = 0.0
  constant one  : real = 1.0

  val (=) (x y : real) : bool ensures { result <-> x = y }

  val function  (-_) real : real
  val function  (+)  real real : real
  val function  (*)  real real : real
  val predicate (<)  real real : bool

  let predicate (>)  (x y : real) = y < x
  let predicate (<=) (x y : real) = x < y || x = y
  let predicate (>=) (x y : real) = y <= x

  clone export algebra.OrderedField with type t = real,
    constant zero = zero, constant one = one,
    function (-_) = (-_), function (+) = (+),
    function (*) = (*), predicate (<=) = (<=)

  meta "remove_unused:keep" function (+)
  meta "remove_unused:keep" function (-)
(* do not necessarily keep, to allow for linear arithmetic only
  meta "remove_unused:keep" function (*)
  meta "remove_unused:keep" function (/)
*)
  meta "remove_unused:keep" function (-_)
  meta "remove_unused:keep" predicate (<)
  meta "remove_unused:keep" predicate (<=)
  meta "remove_unused:keep" predicate (>)
  meta "remove_unused:keep" predicate (>=)

 let (-) (x y : real)
    ensures { result = x - y }
  = x + -y

  val (/) (x y:real) : real
    requires { y <> 0.0 }
    ensures  { result = x / y }

(***
  lemma sub_zero: forall x y:real. x - y = 0.0 -> x = y
*)

end

(** {2 Alternative Infix Operators}

This theory should be used instead of Real when one wants to use both
integer and real binary operators.

*)

module RealInfix

  use Real

  let function (+.) (x:real) (y:real) : real = x + y
  let function (-.) (x:real) (y:real) : real = x - y
  let function ( *.) (x:real) (y:real) : real = x * y
  function (/.) (x:real) (y:real) : real = x / y
  let function (-._) (x:real) : real = - x
  function inv (x:real) : real = Real.inv x

  let (=.) (x:real) (y:real) = x = y
  let predicate (<=.) (x:real) (y:real) = x <= y
  let predicate (>=.) (x:real) (y:real) = x >= y
  let predicate ( <.) (x:real) (y:real) = x < y
  let predicate ( >.) (x:real) (y:real) = x > y

  val (/.) (x y:real) : real
    requires { y <> 0.0 }
    ensures  { result = x /. y }

end

(** {2 Absolute Value} *)

module Abs

  use Real

  let function abs(x : real) : real = if x >= 0.0 then x else -x

  lemma Abs_le: forall x y:real. abs x <= y <-> -y <= x <= y

  lemma Abs_pos: forall x:real. abs x >= 0.0

(***
  lemma Abs_zero: forall x:real. abs x = 0.0 -> x = 0.0
*)

  lemma Abs_sum: forall x y:real. abs(x+y) <= abs x + abs y

  lemma Abs_prod: forall x y:real. abs(x*y) = abs x * abs y

  lemma triangular_inequality:
    forall x y z:real. abs(x-z) <= abs(x-y) + abs(y-z)

end

(** {2 Minimum and Maximum} *)

module MinMax

  use Real
  clone export relations.MinMax with type t = real, predicate le = (<=), goal .

end

(** {2 Injection of integers into reals} *)

module FromInt

  use int.Int as Int
  use Real

  function from_int int : real

  axiom Zero: from_int 0 = 0.0
  axiom One: from_int 1 = 1.0

  axiom Add:
    forall x y:int. from_int (Int.(+) x y) = from_int x + from_int y
  axiom Sub:
    forall x y:int. from_int (Int.(-) x y) = from_int x - from_int y
  axiom Mul:
    forall x y:int. from_int (Int.(*) x y) = from_int x * from_int y
  axiom Neg:
    forall x:int. from_int (Int.(-_) (x)) = - from_int x

  lemma Injective:
    forall x y: int. from_int x = from_int y -> x = y
  axiom Monotonic:
    forall x y:int. Int.(<=) x y -> from_int x <= from_int y

end

(** {2 Various truncation functions} *)

module Truncate

  use Real
  use FromInt

  (** rounds towards zero *)
  function truncate real : int

  axiom Truncate_int :
    forall i:int. truncate (from_int i) = i

  axiom Truncate_down_pos:
    forall x:real. x >= 0.0 ->
      from_int (truncate x) <= x < from_int (Int.(+) (truncate x) 1)

  axiom Truncate_up_neg:
    forall x:real. x <= 0.0 ->
      from_int (Int.(-) (truncate x) 1) < x <= from_int (truncate x)

  axiom Real_of_truncate:
    forall x:real. x - 1.0 <= from_int (truncate x) <= x + 1.0

  axiom Truncate_monotonic:
    forall x y:real. x <= y -> Int.(<=) (truncate x) (truncate y)

  axiom Truncate_monotonic_int1:
    forall x:real, i:int. x <= from_int i -> Int.(<=) (truncate x) i

  axiom Truncate_monotonic_int2:
    forall x:real, i:int. from_int i <= x -> Int.(<=) i (truncate x)

  function floor real : int
  function ceil real : int
  (** roundings up and down *)

  axiom Floor_int :
    forall i:int. floor (from_int i) = i

  axiom Ceil_int :
    forall i:int. ceil (from_int i) = i

  axiom Floor_down:
    forall x:real. from_int (floor x) <= x < from_int (Int.(+) (floor x) 1)

  axiom Ceil_up:
    forall x:real. from_int (Int.(-) (ceil x) 1) < x <= from_int (ceil x)

  axiom Floor_monotonic:
    forall x y:real. x <= y -> Int.(<=) (floor x) (floor y)

  axiom Ceil_monotonic:
    forall x y:real. x <= y -> Int.(<=) (ceil x) (ceil y)

end

(** {2 Square and Square Root} *)

module Square

  use Real

  function sqr (x : real) : real = x * x

  val function sqrt real : real

  axiom Sqrt_positive:
    forall x:real. x >= 0.0 -> sqrt x >= 0.0

  axiom Sqrt_square:
    forall x:real. x >= 0.0 -> sqr (sqrt x) = x

  axiom Square_sqrt:
    forall x:real. x >= 0.0 -> sqrt (x*x) = x

  axiom Sqrt_mul:
    forall x y:real. x >= 0.0 /\ y >= 0.0 ->
      sqrt (x*y) = sqrt x * sqrt y

  axiom Sqrt_le :
    forall x y:real. 0.0 <= x <= y -> sqrt x <= sqrt y

end

(** {2 Exponential and Logarithm} *)

module ExpLog

  use Real

  val function exp real : real
  axiom Exp_zero : exp(0.0) = 1.0
  axiom Exp_sum : forall x y:real. exp (x+y) = exp x * exp y
  axiom exp_increasing : forall x y. x <= y -> exp(x) <= exp(y)
  axiom exp_positive : forall x. exp(x) > 0.0
  axiom exp_inv : forall x. exp (-x) = inv (exp x)
  lemma exp_sum_opposite: forall x : real. exp(x) + exp(-x) >= 2.0

  constant e : real = exp 1.0

  val function log real : real
  axiom Log_one : log 1.0 = 0.0
  axiom Log_mul :
    forall x y:real. x > 0.0 /\ y > 0.0 -> log (x*y) = log x + log y
  axiom log_increasing : forall x y. 0.0 < x <= y -> log(x) <= log(y)

  axiom Log_exp: forall x:real. log (exp x) = x

  axiom Exp_log: forall x:real. x > 0.0 -> exp (log x) = x

  function log2 (x : real) : real = log x / log 2.0
  function log10 (x : real) : real = log x / log 10.0

  lemma log2_increasing : forall x y. 0. < x <= y -> log2(x) <= log2(y)
  lemma log10_increasing : forall x y. 0. < x <= y -> log10(x) <= log10(y)

end

(** {2 Power of a real to an integer} *)

module PowerInt

  use int.Int
  use RealInfix

  clone export int.Exponentiation with
    type t = real, constant one = Real.one, function (*) = Real.(*),
    goal Assoc, goal Unit_def_l, goal Unit_def_r, axiom Power_0, axiom Power_s

  lemma Pow_ge_one:
    forall x:real, n:int. 0 <= n /\ 1.0 <=. x -> 1.0 <=. power x n

end

(** {2 Power of a real to a real exponent} *)

module PowerReal

  use Real
  use ExpLog

  function pow real real : real

  axiom Pow_def:
    forall x y:real. x > 0.0 -> pow x y = exp (y * log x)

  lemma Pow_pos:
    forall x y. x > 0.0 -> pow x y > 0.0

  lemma Pow_plus :
    forall x y z. z > 0.0 -> pow z (x + y) = pow z x * pow z y

  lemma Pow_mult :
    forall x y z. x > 0.0 -> pow (pow x y) z = pow x (y * z)

  lemma Pow_x_zero:
    forall x:real. x > 0.0 -> pow x 0.0 = 1.0

  lemma Pow_x_one:
    forall x:real. x > 0.0 -> pow x 1.0 = x

  lemma Pow_one_y:
    forall y:real. pow 1.0 y = 1.0

  use Square

  lemma Pow_x_two:
    forall x:real. x > 0.0 -> pow x 2.0 = sqr x

  lemma Pow_half:
    forall x:real. x > 0.0 -> pow x 0.5 = sqrt x

  use FromInt
  use int.Power

  lemma pow_from_int: forall x y: int. Int.(<) 0 x -> Int.(<=) 0 y ->
                      pow (from_int x) (from_int y) = from_int (power x y)


end

(** {2 Trigonometric Functions}

See the {h <a href="http://en.wikipedia.org/wiki/Trigonometric_function">wikipedia page</a>}.

*)

module Trigonometry

  use Real
  use Square
  use Abs

  function cos real : real
  function sin real : real

  axiom Pythagorean_identity:
    forall x:real. sqr (cos x) + sqr (sin x) = 1.0

  lemma Cos_le_one: forall x:real. abs (cos x) <= 1.0
  lemma Sin_le_one: forall x:real. abs (sin x) <= 1.0

  axiom Cos_0: cos 0.0 = 1.0
  axiom Sin_0: sin 0.0 = 0.0

  val constant pi : real

  axiom Pi_double_precision_bounds:
    0x1.921fb54442d18p+1 < pi < 0x1.921fb54442d19p+1
(*
  axiom Pi_interval:
   3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196
   < pi <
   3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038197
*)

  axiom Cos_pi: cos pi = -1.0
  axiom Sin_pi: sin pi = 0.0

  axiom Cos_pi2: cos (0.5 * pi) = 0.0
  axiom Sin_pi2: sin (0.5 * pi) = 1.0

  axiom Cos_plus_pi: forall x:real. cos (x + pi) = - cos x
  axiom Sin_plus_pi: forall x:real. sin (x + pi) = - sin x

  axiom Cos_plus_pi2: forall x:real. cos (x + 0.5*pi) = - sin x
  axiom Sin_plus_pi2: forall x:real. sin (x + 0.5*pi) = cos x

  axiom Cos_neg:
    forall x:real. cos (-x) = cos x
  axiom Sin_neg:
    forall x:real. sin (-x) = - sin x

  axiom Cos_sum:
    forall x y:real. cos (x+y) = cos x * cos y - sin x * sin y
  axiom Sin_sum:
    forall x y:real. sin (x+y) = sin x * cos y + cos x * sin y

  function tan (x : real) : real = sin x / cos x
  function atan real : real
  axiom Tan_atan:
    forall x:real. tan (atan x) = x

end

(** {2 Hyperbolic Functions}

See the {h <a href="http://en.wikipedia.org/wiki/Hyperbolic_function">wikipedia page</a>}.

*)

module Hyperbolic

  use Real
  use Square
  use ExpLog

  function sinh (x : real) : real = 0.5 * (exp x - exp (-x))
  function cosh (x : real) : real = 0.5 * (exp x + exp (-x))
  function tanh (x : real) : real = sinh x / cosh x

  function asinh (x : real) : real = log (x + sqrt (sqr x + 1.0))
  function acosh (x : real) : real
  axiom Acosh_def:
    forall x:real. x >= 1.0 -> acosh x = log (x + sqrt (sqr x - 1.0))
  function atanh (x : real) : real
  axiom Atanh_def:
    forall x:real. -1.0 < x < 1.0 -> atanh x = 0.5 * log ((1.0+x)/(1.0-x))

end

(** {2 Polar Coordinates}

See the {h <a href="http://en.wikipedia.org/wiki/Atan2">wikipedia page</a>}.

*)

module Polar

  use Real
  use Square
  use Trigonometry

  function hypot (x y : real) : real = sqrt (sqr x + sqr y)
  function atan2 real real : real

  axiom X_from_polar:
    forall x y:real. x = hypot x y * cos (atan2 y x)

  axiom Y_from_polar:
    forall x y:real. y = hypot x y * sin (atan2 y x)

end

module Sum
  use int.Int
  use RealInfix

  let rec ghost function sum (f: int -> real) (a b: int) : real
    variant { b - a }
  = if (b <= a) then 0. else sum f a (b - 1) +. f (b - 1)
end