1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
|
(** {1 Theory of reals}
This file provides the basic theory of real numbers, and several
additional theories for classical real functions.
*)
(** {2 Real numbers and the basic unary and binary operators} *)
module Real
constant zero : real = 0.0
constant one : real = 1.0
val (=) (x y : real) : bool ensures { result <-> x = y }
val function (-_) real : real
val function (+) real real : real
val function (*) real real : real
val predicate (<) real real : bool
let predicate (>) (x y : real) = y < x
let predicate (<=) (x y : real) = x < y || x = y
let predicate (>=) (x y : real) = y <= x
clone export algebra.OrderedField with type t = real,
constant zero = zero, constant one = one,
function (-_) = (-_), function (+) = (+),
function (*) = (*), predicate (<=) = (<=)
meta "remove_unused:keep" function (+)
meta "remove_unused:keep" function (-)
(* do not necessarily keep, to allow for linear arithmetic only
meta "remove_unused:keep" function (*)
meta "remove_unused:keep" function (/)
*)
meta "remove_unused:keep" function (-_)
meta "remove_unused:keep" predicate (<)
meta "remove_unused:keep" predicate (<=)
meta "remove_unused:keep" predicate (>)
meta "remove_unused:keep" predicate (>=)
let (-) (x y : real)
ensures { result = x - y }
= x + -y
val (/) (x y:real) : real
requires { y <> 0.0 }
ensures { result = x / y }
(***
lemma sub_zero: forall x y:real. x - y = 0.0 -> x = y
*)
end
(** {2 Alternative Infix Operators}
This theory should be used instead of Real when one wants to use both
integer and real binary operators.
*)
module RealInfix
use Real
let function (+.) (x:real) (y:real) : real = x + y
let function (-.) (x:real) (y:real) : real = x - y
let function ( *.) (x:real) (y:real) : real = x * y
function (/.) (x:real) (y:real) : real = x / y
let function (-._) (x:real) : real = - x
function inv (x:real) : real = Real.inv x
let (=.) (x:real) (y:real) = x = y
let predicate (<=.) (x:real) (y:real) = x <= y
let predicate (>=.) (x:real) (y:real) = x >= y
let predicate ( <.) (x:real) (y:real) = x < y
let predicate ( >.) (x:real) (y:real) = x > y
val (/.) (x y:real) : real
requires { y <> 0.0 }
ensures { result = x /. y }
end
(** {2 Absolute Value} *)
module Abs
use Real
let function abs(x : real) : real = if x >= 0.0 then x else -x
lemma Abs_le: forall x y:real. abs x <= y <-> -y <= x <= y
lemma Abs_pos: forall x:real. abs x >= 0.0
(***
lemma Abs_zero: forall x:real. abs x = 0.0 -> x = 0.0
*)
lemma Abs_sum: forall x y:real. abs(x+y) <= abs x + abs y
lemma Abs_prod: forall x y:real. abs(x*y) = abs x * abs y
lemma triangular_inequality:
forall x y z:real. abs(x-z) <= abs(x-y) + abs(y-z)
end
(** {2 Minimum and Maximum} *)
module MinMax
use Real
clone export relations.MinMax with type t = real, predicate le = (<=), goal .
end
(** {2 Injection of integers into reals} *)
module FromInt
use int.Int as Int
use Real
function from_int int : real
axiom Zero: from_int 0 = 0.0
axiom One: from_int 1 = 1.0
axiom Add:
forall x y:int. from_int (Int.(+) x y) = from_int x + from_int y
axiom Sub:
forall x y:int. from_int (Int.(-) x y) = from_int x - from_int y
axiom Mul:
forall x y:int. from_int (Int.(*) x y) = from_int x * from_int y
axiom Neg:
forall x:int. from_int (Int.(-_) (x)) = - from_int x
lemma Injective:
forall x y: int. from_int x = from_int y -> x = y
axiom Monotonic:
forall x y:int. Int.(<=) x y -> from_int x <= from_int y
end
(** {2 Various truncation functions} *)
module Truncate
use Real
use FromInt
(** rounds towards zero *)
function truncate real : int
axiom Truncate_int :
forall i:int. truncate (from_int i) = i
axiom Truncate_down_pos:
forall x:real. x >= 0.0 ->
from_int (truncate x) <= x < from_int (Int.(+) (truncate x) 1)
axiom Truncate_up_neg:
forall x:real. x <= 0.0 ->
from_int (Int.(-) (truncate x) 1) < x <= from_int (truncate x)
axiom Real_of_truncate:
forall x:real. x - 1.0 <= from_int (truncate x) <= x + 1.0
axiom Truncate_monotonic:
forall x y:real. x <= y -> Int.(<=) (truncate x) (truncate y)
axiom Truncate_monotonic_int1:
forall x:real, i:int. x <= from_int i -> Int.(<=) (truncate x) i
axiom Truncate_monotonic_int2:
forall x:real, i:int. from_int i <= x -> Int.(<=) i (truncate x)
function floor real : int
function ceil real : int
(** roundings up and down *)
axiom Floor_int :
forall i:int. floor (from_int i) = i
axiom Ceil_int :
forall i:int. ceil (from_int i) = i
axiom Floor_down:
forall x:real. from_int (floor x) <= x < from_int (Int.(+) (floor x) 1)
axiom Ceil_up:
forall x:real. from_int (Int.(-) (ceil x) 1) < x <= from_int (ceil x)
axiom Floor_monotonic:
forall x y:real. x <= y -> Int.(<=) (floor x) (floor y)
axiom Ceil_monotonic:
forall x y:real. x <= y -> Int.(<=) (ceil x) (ceil y)
end
(** {2 Square and Square Root} *)
module Square
use Real
function sqr (x : real) : real = x * x
val function sqrt real : real
axiom Sqrt_positive:
forall x:real. x >= 0.0 -> sqrt x >= 0.0
axiom Sqrt_square:
forall x:real. x >= 0.0 -> sqr (sqrt x) = x
axiom Square_sqrt:
forall x:real. x >= 0.0 -> sqrt (x*x) = x
axiom Sqrt_mul:
forall x y:real. x >= 0.0 /\ y >= 0.0 ->
sqrt (x*y) = sqrt x * sqrt y
axiom Sqrt_le :
forall x y:real. 0.0 <= x <= y -> sqrt x <= sqrt y
end
(** {2 Exponential and Logarithm} *)
module ExpLog
use Real
val function exp real : real
axiom Exp_zero : exp(0.0) = 1.0
axiom Exp_sum : forall x y:real. exp (x+y) = exp x * exp y
axiom exp_increasing : forall x y. x <= y -> exp(x) <= exp(y)
axiom exp_positive : forall x. exp(x) > 0.0
axiom exp_inv : forall x. exp (-x) = inv (exp x)
lemma exp_sum_opposite: forall x : real. exp(x) + exp(-x) >= 2.0
constant e : real = exp 1.0
val function log real : real
axiom Log_one : log 1.0 = 0.0
axiom Log_mul :
forall x y:real. x > 0.0 /\ y > 0.0 -> log (x*y) = log x + log y
axiom log_increasing : forall x y. 0.0 < x <= y -> log(x) <= log(y)
axiom Log_exp: forall x:real. log (exp x) = x
axiom Exp_log: forall x:real. x > 0.0 -> exp (log x) = x
function log2 (x : real) : real = log x / log 2.0
function log10 (x : real) : real = log x / log 10.0
lemma log2_increasing : forall x y. 0. < x <= y -> log2(x) <= log2(y)
lemma log10_increasing : forall x y. 0. < x <= y -> log10(x) <= log10(y)
end
(** {2 Power of a real to an integer} *)
module PowerInt
use int.Int
use RealInfix
clone export int.Exponentiation with
type t = real, constant one = Real.one, function (*) = Real.(*),
goal Assoc, goal Unit_def_l, goal Unit_def_r, axiom Power_0, axiom Power_s
lemma Pow_ge_one:
forall x:real, n:int. 0 <= n /\ 1.0 <=. x -> 1.0 <=. power x n
end
(** {2 Power of a real to a real exponent} *)
module PowerReal
use Real
use ExpLog
function pow real real : real
axiom Pow_def:
forall x y:real. x > 0.0 -> pow x y = exp (y * log x)
lemma Pow_pos:
forall x y. x > 0.0 -> pow x y > 0.0
lemma Pow_plus :
forall x y z. z > 0.0 -> pow z (x + y) = pow z x * pow z y
lemma Pow_mult :
forall x y z. x > 0.0 -> pow (pow x y) z = pow x (y * z)
lemma Pow_x_zero:
forall x:real. x > 0.0 -> pow x 0.0 = 1.0
lemma Pow_x_one:
forall x:real. x > 0.0 -> pow x 1.0 = x
lemma Pow_one_y:
forall y:real. pow 1.0 y = 1.0
use Square
lemma Pow_x_two:
forall x:real. x > 0.0 -> pow x 2.0 = sqr x
lemma Pow_half:
forall x:real. x > 0.0 -> pow x 0.5 = sqrt x
use FromInt
use int.Power
lemma pow_from_int: forall x y: int. Int.(<) 0 x -> Int.(<=) 0 y ->
pow (from_int x) (from_int y) = from_int (power x y)
end
(** {2 Trigonometric Functions}
See the {h <a href="http://en.wikipedia.org/wiki/Trigonometric_function">wikipedia page</a>}.
*)
module Trigonometry
use Real
use Square
use Abs
function cos real : real
function sin real : real
axiom Pythagorean_identity:
forall x:real. sqr (cos x) + sqr (sin x) = 1.0
lemma Cos_le_one: forall x:real. abs (cos x) <= 1.0
lemma Sin_le_one: forall x:real. abs (sin x) <= 1.0
axiom Cos_0: cos 0.0 = 1.0
axiom Sin_0: sin 0.0 = 0.0
val constant pi : real
axiom Pi_double_precision_bounds:
0x1.921fb54442d18p+1 < pi < 0x1.921fb54442d19p+1
(*
axiom Pi_interval:
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196
< pi <
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038197
*)
axiom Cos_pi: cos pi = -1.0
axiom Sin_pi: sin pi = 0.0
axiom Cos_pi2: cos (0.5 * pi) = 0.0
axiom Sin_pi2: sin (0.5 * pi) = 1.0
axiom Cos_plus_pi: forall x:real. cos (x + pi) = - cos x
axiom Sin_plus_pi: forall x:real. sin (x + pi) = - sin x
axiom Cos_plus_pi2: forall x:real. cos (x + 0.5*pi) = - sin x
axiom Sin_plus_pi2: forall x:real. sin (x + 0.5*pi) = cos x
axiom Cos_neg:
forall x:real. cos (-x) = cos x
axiom Sin_neg:
forall x:real. sin (-x) = - sin x
axiom Cos_sum:
forall x y:real. cos (x+y) = cos x * cos y - sin x * sin y
axiom Sin_sum:
forall x y:real. sin (x+y) = sin x * cos y + cos x * sin y
function tan (x : real) : real = sin x / cos x
function atan real : real
axiom Tan_atan:
forall x:real. tan (atan x) = x
end
(** {2 Hyperbolic Functions}
See the {h <a href="http://en.wikipedia.org/wiki/Hyperbolic_function">wikipedia page</a>}.
*)
module Hyperbolic
use Real
use Square
use ExpLog
function sinh (x : real) : real = 0.5 * (exp x - exp (-x))
function cosh (x : real) : real = 0.5 * (exp x + exp (-x))
function tanh (x : real) : real = sinh x / cosh x
function asinh (x : real) : real = log (x + sqrt (sqr x + 1.0))
function acosh (x : real) : real
axiom Acosh_def:
forall x:real. x >= 1.0 -> acosh x = log (x + sqrt (sqr x - 1.0))
function atanh (x : real) : real
axiom Atanh_def:
forall x:real. -1.0 < x < 1.0 -> atanh x = 0.5 * log ((1.0+x)/(1.0-x))
end
(** {2 Polar Coordinates}
See the {h <a href="http://en.wikipedia.org/wiki/Atan2">wikipedia page</a>}.
*)
module Polar
use Real
use Square
use Trigonometry
function hypot (x y : real) : real = sqrt (sqr x + sqr y)
function atan2 real real : real
axiom X_from_polar:
forall x y:real. x = hypot x y * cos (atan2 y x)
axiom Y_from_polar:
forall x y:real. y = hypot x y * sin (atan2 y x)
end
module Sum
use int.Int
use RealInfix
let rec ghost function sum (f: int -> real) (a b: int) : real
variant { b - a }
= if (b <= a) then 0. else sum f a (b - 1) +. f (b - 1)
end
|