File: set.mlw

package info (click to toggle)
why3 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 45,020 kB
  • sloc: xml: 185,443; ml: 111,224; ansic: 3,998; sh: 2,578; makefile: 2,568; java: 865; python: 720; javascript: 290; lisp: 205; pascal: 173
file content (710 lines) | stat: -rw-r--r-- 18,245 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710

(** {1 Set theories}

  - polymorphic sets to be used in specification/ghost only
    (no executable functions)

    - `Set`, `Cardinal`: possibly infinite sets
    - `Fset`, `FsetInt`, `FsetInduction`, `FsetSum`: finite sets

  - monomorphic finite sets to be used in programs only (no logical functions)

    a program function `eq` deciding equality on the element type must be
    provided when cloned

    - `SetApp`, `SetAppInt`: immutable sets
    - `SetImp`, `SetImpInt`: mutable sets

*)

(** {2 Potentially infinite sets} *)

module Set

  use map.Map
  use map.Const

  type set 'a = map 'a bool

  (** if `'a` is an infinite type, then `set 'a` is infinite *)
  meta "material_type_arg" type set, 0

  (** membership *)
  predicate mem (x: 'a) (s: set 'a) = s[x]

  use map.MapExt (* this imports extensionality for sets *)
(*
(** equality *)
  predicate (==) (s1 s2: set 'a) = forall x: 'a. mem x s1 <-> mem x s2

  lemma extensionality:
    forall s1 s2: set 'a. s1 == s2 -> s1 = s2

  meta extensionality predicate (==)
*)

  (** inclusion *)
  predicate subset (s1 s2: set 'a) = forall x : 'a. mem x s1 -> mem x s2

  lemma subset_refl:
    forall s: set 'a. subset s s

  lemma subset_trans:
    forall s1 s2 s3: set 'a. subset s1 s2 -> subset s2 s3 -> subset s1 s3

  (** empty set *)
  predicate is_empty (s: set 'a) = forall x: 'a. not (mem x s)

  let constant empty: set 'a = const false

  lemma is_empty_empty: is_empty (empty: set 'a)

  lemma empty_is_empty:
    forall s: set 'a. is_empty s -> s = empty

  (** whole set *)
  let constant all: set 'a = const true

  (** addition *)
  function add (x: 'a) (s: set 'a): set 'a = s[x <- true]

  function singleton (x: 'a): set 'a = add x empty

  lemma mem_singleton:
    forall x, y: 'a. mem y (singleton x) -> y = x

  (** removal *)
  function remove (x: 'a) (s: set 'a): set 'a = s[x <- false]

  lemma add_remove:
    forall x: 'a, s: set 'a. mem x s -> add x (remove x s) = s

  lemma remove_add:
    forall x: 'a, s: set 'a. remove x (add x s) = remove x s

  lemma subset_remove:
    forall x: 'a, s: set 'a. subset (remove x s) s

  (** union *)
  function union (s1 s2: set 'a): set 'a
  = fun x -> mem x s1 \/ mem x s2

  lemma subset_union_1:
    forall s1 s2: set 'a. subset s1 (union s1 s2)
  lemma subset_union_2:
    forall s1 s2: set 'a. subset s2 (union s1 s2)

  (** intersection *)
  function inter (s1 s2: set 'a): set 'a
  = fun x -> mem x s1 /\ mem x s2

  lemma subset_inter_1:
    forall s1 s2: set 'a. subset (inter s1 s2) s1
  lemma subset_inter_2:
    forall s1 s2: set 'a. subset (inter s1 s2) s2

  (** difference *)
  function diff (s1 s2: set 'a): set 'a
  = fun x -> mem x s1 /\ not (mem x s2)

  lemma subset_diff:
    forall s1 s2: set 'a. subset (diff s1 s2) s1

  (** complement *)
  function complement (s: set 'a): set 'a
  = fun x -> not (mem x s)

  (** arbitrary element *)
  function pick (s: set 'a): 'a

  axiom pick_def: forall s: set 'a. not (is_empty s) -> mem (pick s) s

  (** disjoint sets *)
  predicate disjoint (s1 s2: set 'a) =
    forall x. not (mem x s1) \/ not (mem x s2)

  lemma disjoint_inter_empty:
    forall s1 s2: set 'a. disjoint s1 s2 <-> is_empty (inter s1 s2)

  lemma disjoint_diff_eq:
    forall s1 s2: set 'a. disjoint s1 s2 <-> diff s1 s2 = s1

  lemma disjoint_diff_s2:
    forall s1 s2: set 'a. disjoint (diff s1 s2) s2

  (** `{ (x, y) | x in s1 /\ y in s2 }` *)
  function product (s1: set 'a) (s2: set 'b) : set ('a, 'b)
  axiom product_def:
    forall s1: set 'a, s2: set 'b, x : 'a, y : 'b.
    mem (x, y) (product s1 s2) <-> mem x s1 /\ mem y s2

  (** `{ x | x in s /\ p x }` *)
  function filter (s: set 'a) (p: 'a -> bool) : set 'a
  axiom filter_def:
    forall s: set 'a, p: 'a -> bool, x: 'a. mem x (filter s p) <-> mem x s /\ p x

  lemma subset_filter:
    forall s: set 'a, p: 'a -> bool. subset (filter s p) s

  (** `{ f x | x in U }` *)
  function map (f: 'a -> 'b) (u: set 'a) : set 'b =
    fun (y: 'b) -> exists x: 'a. mem x u /\ y = f x

  lemma mem_map:
    forall f: 'a -> 'b, u: set 'a.
    forall x: 'a. mem x u -> mem (f x) (map f u)

end

module Cardinal

  use Set

  predicate is_finite (s: set 'a)

  axiom is_finite_empty:
    forall s: set 'a. is_empty s -> is_finite s

  axiom is_finite_subset:
    forall s1 s2: set 'a. is_finite s2 -> subset s1 s2 -> is_finite s1

  axiom is_finite_add:
    forall x: 'a, s: set 'a. is_finite s -> is_finite (add x s)
  axiom is_finite_add_rev:
    forall x: 'a, s: set 'a. is_finite (add x s) -> is_finite s

  lemma is_finite_singleton:
    forall x: 'a. is_finite (singleton x)

  axiom is_finite_remove:
    forall x: 'a, s: set 'a. is_finite s -> is_finite (remove x s)
  axiom is_finite_remove_rev:
    forall x: 'a, s: set 'a. is_finite (remove x s) -> is_finite s

  axiom is_finite_union:
    forall s1 s2: set 'a.
    is_finite s1 -> is_finite s2 -> is_finite (union s1 s2)
  axiom is_finite_union_rev:
    forall s1 s2: set 'a.
    is_finite (union s1 s2) -> is_finite s1 /\ is_finite s2

  axiom is_finite_inter_left:
    forall s1 s2: set 'a. is_finite s1 -> is_finite (inter s1 s2)
  axiom is_finite_inter_right:
    forall s1 s2: set 'a. is_finite s2 -> is_finite (inter s1 s2)

  axiom is_finite_diff:
    forall s1 s2: set 'a. is_finite s1 -> is_finite (diff s1 s2)

  lemma is_finite_map:
    forall f: 'a -> 'b, s: set 'a. is_finite s -> is_finite (map f s)

  lemma is_finite_product:
    forall s1: set 'a, s2 : set 'b. is_finite s1 -> is_finite s2 ->
           is_finite (product s1 s2)

  (** `cardinal` function *)

  use int.Int

  function cardinal (set 'a): int

  axiom cardinal_nonneg:
    forall s: set 'a. cardinal s >= 0

  axiom cardinal_empty:
    forall s: set 'a. is_finite s -> (is_empty s <-> cardinal s = 0)

  axiom cardinal_add:
    forall x: 'a. forall s: set 'a. is_finite s ->
    if mem x s then cardinal (add x s) = cardinal s
               else cardinal (add x s) = cardinal s + 1

  axiom cardinal_remove:
    forall x: 'a. forall s: set 'a. is_finite s ->
    if mem x s then cardinal (remove x s) = cardinal s - 1
               else cardinal (remove x s) = cardinal s

  axiom cardinal_subset:
    forall s1 s2: set 'a. is_finite s2 ->
    subset s1 s2 -> cardinal s1 <= cardinal s2

  lemma subset_eq:
    forall s1 s2: set 'a. is_finite s2 ->
    subset s1 s2 -> cardinal s1 = cardinal s2 -> s1 = s2

  lemma cardinal1:
    forall s: set 'a. cardinal s = 1 ->
    forall x: 'a. mem x s -> x = pick s

  axiom cardinal_union:
    forall s1 s2: set 'a. is_finite s1 -> is_finite s2 ->
    cardinal (union s1 s2) = cardinal s1 + cardinal s2 - cardinal (inter s1 s2)

  lemma cardinal_inter_disjoint:
    forall s1 s2: set 'a. disjoint s1 s2 -> cardinal (inter s1 s2) = 0

  axiom cardinal_diff:
    forall s1 s2: set 'a. is_finite s1 ->
    cardinal (diff s1 s2) = cardinal s1 - cardinal (inter s1 s2)

  lemma cardinal_map:
    forall f: 'a -> 'b, s: set 'a. is_finite s ->
    cardinal (map f s) <= cardinal s

  lemma cardinal_product:
    forall s1: set 'a, s2 : set 'b. is_finite s1 -> is_finite s2 ->
    cardinal (product s1 s2) = cardinal s1 * cardinal s2
end

(** {2 Finite sets} *)

module Fset

  type fset 'a

  (** if `'a` is an infinite type, then `fset 'a` is infinite *)
  meta "material_type_arg" type fset, 0

  (** membership *)
  predicate mem (x: 'a) (s: fset 'a) (* = s.to_map[x] *)

  (** equality *)
  predicate (==) (s1 s2: fset 'a) = forall x: 'a. mem x s1 <-> mem x s2

  lemma extensionality:
    forall s1 s2: fset 'a. s1 == s2 -> s1 = s2

  meta extensionality predicate (==)

  (** inclusion *)
  predicate subset (s1 s2: fset 'a) = forall x : 'a. mem x s1 -> mem x s2

  lemma subset_refl:
    forall s: fset 'a. subset s s

  lemma subset_trans:
    forall s1 s2 s3: fset 'a. subset s1 s2 -> subset s2 s3 -> subset s1 s3

  (** empty set *)
  predicate is_empty (s: fset 'a) = forall x: 'a. not (mem x s)

  constant empty: fset 'a
  (* axiom empty_def: (empty: fset 'a).to_map = const false *)

  axiom is_empty_empty: is_empty (empty: fset 'a)

  lemma empty_is_empty:
    forall s: fset 'a. is_empty s -> s = empty

  (** addition *)
  function add (x: 'a) (s: fset 'a) : fset 'a
  axiom add_def:
    forall x: 'a, s: fset 'a, y: 'a. mem y (add x s) <-> (mem y s \/ y = x)

  function singleton (x: 'a): fset 'a = add x empty

  lemma mem_singleton:
    forall x, y: 'a. mem y (singleton x) -> y = x

  (** removal *)
  function remove (x: 'a) (s: fset 'a) : fset 'a
  axiom remove_def:
    forall x: 'a, s: fset 'a, y: 'a. mem y (remove x s) <-> (mem y s /\ y <> x)

  lemma add_remove:
    forall x: 'a, s: fset 'a. mem x s -> add x (remove x s) = s

  lemma remove_add:
    forall x: 'a, s: fset 'a. remove x (add x s) = remove x s

  lemma subset_remove:
    forall x: 'a, s: fset 'a. subset (remove x s) s

  (** union *)
  function union (s1 s2: fset 'a): fset 'a
  axiom union_def:
    forall s1 s2: fset 'a, x: 'a. mem x (union s1 s2) <-> mem x s1 \/ mem x s2

  lemma subset_union_1:
    forall s1 s2: fset 'a. subset s1 (union s1 s2)
  lemma subset_union_2:
    forall s1 s2: fset 'a. subset s2 (union s1 s2)

  (** intersection *)
  function inter (s1 s2: fset 'a): fset 'a
  axiom inter_def:
    forall s1 s2: fset 'a, x: 'a. mem x (inter s1 s2) <-> mem x s1 /\ mem x s2

  lemma subset_inter_1:
    forall s1 s2: fset 'a. subset (inter s1 s2) s1
  lemma subset_inter_2:
    forall s1 s2: fset 'a. subset (inter s1 s2) s2

  (** difference *)
  function diff (s1 s2: fset 'a): fset 'a
  axiom diff_def:
    forall s1 s2: fset 'a, x: 'a. mem x (diff s1 s2) <-> mem x s1 /\ not (mem x s2)

  lemma subset_diff:
    forall s1 s2: fset 'a. subset (diff s1 s2) s1

  (** arbitrary element *)
  function pick (s: fset 'a): 'a

  axiom pick_def: forall s: fset 'a. not (is_empty s) -> mem (pick s) s

  (** disjoint sets *)
  predicate disjoint (s1 s2: fset 'a) =
    forall x. not (mem x s1) \/ not (mem x s2)

  lemma disjoint_inter_empty:
    forall s1 s2: fset 'a. disjoint s1 s2 <-> is_empty (inter s1 s2)

  lemma disjoint_diff_eq:
    forall s1 s2: fset 'a. disjoint s1 s2 <-> diff s1 s2 = s1

  lemma disjoint_diff_s2:
    forall s1 s2: fset 'a. disjoint (diff s1 s2) s2

  (** `{ x | x in s /\ p x }` *)
  function filter (s: fset 'a) (p: 'a -> bool) : fset 'a
  axiom filter_def:
    forall s: fset 'a, p: 'a -> bool, x: 'a. mem x (filter s p) <-> mem x s /\ p x

  lemma subset_filter:
    forall s: fset 'a, p: 'a -> bool. subset (filter s p) s

  (** `{ f x | x in U }` *)
  function map (f: 'a -> 'b) (u: fset 'a) : fset 'b
  axiom map_def:
    forall f: 'a -> 'b, u: fset 'a, y: 'b.
    mem y (map f u) <-> exists x: 'a. mem x u /\ y = f x

  lemma mem_map:
    forall f: 'a -> 'b, u: fset 'a.
    forall x: 'a. mem x u -> mem (f x) (map f u)

  (** cardinal *)

  use int.Int

  function cardinal (fset 'a) : int

  axiom cardinal_nonneg:
    forall s: fset 'a. cardinal s >= 0

  axiom cardinal_empty:
    forall s: fset 'a. is_empty s <-> cardinal s = 0

  axiom cardinal_add:
    forall x: 'a. forall s: fset 'a.
    if mem x s then cardinal (add x s) = cardinal s
               else cardinal (add x s) = cardinal s + 1

  axiom cardinal_remove:
    forall x: 'a. forall s: fset 'a.
    if mem x s then cardinal (remove x s) = cardinal s - 1
               else cardinal (remove x s) = cardinal s

  axiom cardinal_subset:
    forall s1 s2: fset 'a.
    subset s1 s2 -> cardinal s1 <= cardinal s2

  lemma subset_eq:
    forall s1 s2: fset 'a.
    subset s1 s2 -> cardinal s1 = cardinal s2 -> s1 = s2

  lemma cardinal1:
    forall s: fset 'a. cardinal s = 1 ->
    forall x: 'a. mem x s -> x = pick s

  axiom cardinal_union:
    forall s1 s2: fset 'a.
    cardinal (union s1 s2) = cardinal s1 + cardinal s2 - cardinal (inter s1 s2)

  lemma cardinal_inter_disjoint:
    forall s1 s2: fset 'a. disjoint s1 s2 -> cardinal (inter s1 s2) = 0

  axiom cardinal_diff:
    forall s1 s2: fset 'a.
    cardinal (diff s1 s2) = cardinal s1 - cardinal (inter s1 s2)

  lemma cardinal_filter:
    forall s: fset 'a, p: 'a -> bool.
    cardinal (filter s p) <= cardinal s

  lemma cardinal_map:
    forall f: 'a -> 'b, s: fset 'a.
    cardinal (map f s) <= cardinal s

end

(** {2 Induction principle on finite sets} *)

module FsetInduction

  use Fset

  type t

  predicate p (fset t)

  lemma Induction:
    (forall s: fset t. is_empty s -> p s) ->
    (forall s: fset t. p s -> forall t. p (add t s)) ->
    forall s: fset t. p s

end

(** {2 Finite sets of integers} *)

module FsetInt

  use int.Int
  use export Fset

  function min_elt (s: fset int) : int

  axiom min_elt_def:
    forall s: fset int. not (is_empty s) ->
    mem (min_elt s) s /\ forall x. mem x s -> min_elt s <= x

  function max_elt (s: fset int) : int

  axiom max_elt_def:
    forall s: fset int. not (is_empty s) ->
    mem (max_elt s) s /\ forall x. mem x s -> x <= max_elt s

  function interval (l r: int) : fset int
  axiom interval_def:
    forall l r x. mem x (interval l r) <-> l <= x < r

  lemma cardinal_interval:
    forall l r. cardinal (interval l r) = if l <= r then r - l else 0

end

(** {2 Sum of a function over a finite set} *)

module FsetSum

  use int.Int
  use Fset

  function sum (fset 'a) ('a -> int) : int
  (** `sum s f` is the sum `\sum_{mem x s} f x` *)

  axiom sum_def_empty:
    forall s: fset 'a, f. is_empty s -> sum s f = 0

  axiom sum_add:
    forall s: fset 'a, f, x.
    if mem x s then sum (add x s) f = sum s f
               else sum (add x s) f = sum s f + f x

  axiom sum_remove:
    forall s: fset 'a, f, x.
    if mem x s then sum (remove x s) f = sum s f - f x
               else sum (remove x s) f = sum s f

  lemma sum_union:
    forall s1 s2: fset 'a. forall f.
    sum (union s1 s2) f = sum s1 f + sum s2 f - sum (inter s1 s2) f

  lemma sum_eq:
    forall s: fset 'a. forall f g.
    (forall x. mem x s -> f x = g x) -> sum s f = sum s g

  axiom cardinal_is_sum:
    forall s: fset 'a. cardinal s = sum s (fun _ -> 1)

end

(** {2 Finite Monomorphic sets}

    To be used in programs. *)

(** {3 Applicative sets} *)

module SetApp

  use int.Int
  use export Fset

  type elt

  val eq (x y: elt) : bool
    ensures { result <-> x = y }

  type set = abstract {
    to_fset: fset elt;
  }
  meta coercion function to_fset

  val ghost function mk (s: fset elt) : set
    ensures { result.to_fset = s }

  val mem (x: elt) (s: set) : bool
    ensures { result <-> mem x s }

  val (==) (s1 s2: set) : bool
    ensures { result <-> s1 == s2 }

  val subset (s1 s2: set) : bool
    ensures { result <-> subset s1 s2 }

  val empty () : set
    ensures { result.to_fset = empty }
    ensures { cardinal result = 0 }

  val is_empty (s: set) : bool
    ensures { result <-> is_empty s }

  val add (x: elt) (s: set) : set
    ensures { result = add x s }
    ensures { if mem x s then cardinal result = cardinal s
                         else cardinal result = cardinal s + 1 }

  let singleton (x: elt) : set
    ensures { result = singleton x }
    ensures { cardinal result = 1 }
  = add x (empty ())

  val remove (x: elt) (s: set): set
    ensures { result = remove x s }
    ensures { if mem x s then cardinal result = cardinal s - 1
                         else cardinal result = cardinal s }

  val union (s1 s2: set): set
    ensures { result = union s1 s2 }

  val inter (s1 s2: set) : set
    ensures { result = inter s1 s2 }

  val diff (s1 s2: set) : set
    ensures { result = diff s1 s2 }

  val function choose (s: set) : elt
    requires { not (is_empty s) }
    ensures  { mem result s }

  val disjoint (s1 s2: set) : bool
    ensures { result <-> disjoint s1 s2 }

  val cardinal (s: set) : int (* Peano.t *)
    ensures { result = cardinal s }

end

(** {3 Applicative sets of integers} *)

module SetAppInt

  use int.Int
  use export FsetInt

  clone export SetApp with type elt = int, val eq = Int.(=), axiom .

  val min_elt (s: set) : int
    requires { not (is_empty s) }
    ensures  { result = min_elt s }

  val max_elt (s: set) : int
    requires { not (is_empty s) }
    ensures  { result = max_elt s }

  val interval (l r: int) : set
    ensures  { result = interval l r }
    ensures  { cardinal result = if l <= r then r - l else 0 }

end

(** {3 Imperative sets} *)

module SetImp

  use int.Int
  use export Fset

  type elt

  val eq (x y: elt) : bool
    ensures { result <-> x = y }

  type set = abstract {
    mutable to_fset: fset elt;
  }
  meta coercion function to_fset

  val mem (x: elt) (s: set) : bool
    ensures { result <-> mem x s }

  val (==) (s1 s2: set) : bool
    ensures { result <-> s1 == s2 }

  val subset (s1 s2: set) : bool
    ensures { result <-> subset s1 s2 }

  val empty () : set
    ensures { result = empty }
    ensures { cardinal result = 0 }

  val clear (s: set) : unit
    writes  { s }
    ensures { s = empty }

  val is_empty (s: set) : bool
    ensures { result <-> is_empty s }

  val add (x: elt) (s: set) : unit
    writes  { s }
    ensures { s = add x (old s) }
    ensures { if mem x (old s) then cardinal s = cardinal (old s)
                               else cardinal s = cardinal (old s) + 1 }

  let singleton (x: elt) : set
    ensures { result = singleton x }
    ensures { cardinal result = 1 }
  = let s = empty () in
    add x s;
    s

  val remove (x: elt) (s: set) : unit
    writes  { s }
    ensures { s = remove x (old s) }
    ensures { if mem x (old s) then cardinal s = cardinal (old s) - 1
                               else cardinal s = cardinal (old s) }

  val function choose (s: set) : elt
    requires { not (is_empty s) }
    ensures  { mem result s }

  val choose_and_remove (s: set) : elt
    requires { not (is_empty s) }
    writes   { s }
    ensures  { result = choose (old s) }
    ensures  { mem result (old s) }
    ensures  { s = remove result (old s) }

  val disjoint (s1 s2: set) : bool
    ensures { result <-> disjoint s1 s2 }

  val cardinal (s: set) : int (* Peano.t? *)
    ensures { result = cardinal s }

end

(** {3 Imperative sets of integers}

    This module is mapped to OCaml's Hashtbl in the OCaml driver.
*)

module SetImpInt

  use int.Int
  use export FsetInt

  clone export SetImp with type elt = int, val eq = Int.(=), axiom .

end