File: string.mlw

package info (click to toggle)
why3 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 45,020 kB
  • sloc: xml: 185,443; ml: 111,224; ansic: 3,998; sh: 2,578; makefile: 2,568; java: 865; python: 720; javascript: 290; lisp: 205; pascal: 173
file content (635 lines) | stat: -rw-r--r-- 17,684 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
(** {1 Theory of strings}

This file provides a theory over strings. It contains all the
predicates and functions currently supported by the smt-solvers CVC4
and Z3.

*)

(** {2 String operations} *)

module String

  use int.Int

  (** The type `string` is built-in. Indexes for strings start at `0`. *)

  (** The following functions/predicates are available in this theory:
  {h
<style type="text/css">td{padding:0 15px 0 15px;}</style>
<table cellpadding="5" cellspacing="0" border="1" style="border-collapse:collapse">
  <tr><th> Description </th> <th> Name </th> <th> Arguments </th> <th> Result </th> </tr>
  <tr>
    <td/> Concatenate
      <td/> <code> concat <code>      <td/> string string       <td/> string
  </tr><tr>
    <td/> Length
      <td/><code> length </code>     <td/> string              <td/> int
  </tr><tr>
    <td/> Get string of length 1
      <td/><code> s_at </code>       <td/> string int           <td/> string
  </tr><tr>
    <td/> Get substring
      <td/><code> substring </code> <td/> string int int       <td/> string
  </tr><tr>
    <td/> Index of substring
      <td/><code> indexof </code>   <td/> string string int    <td/> int
  </tr><tr>
    <td/> Replace first occurrence
      <td/><code> replace </code>   <td/> string string string <td/> string
  </tr><tr>
    <td/> Replace all occurrences
      <td/><code> replaceall </code><td/> string string string <td/> string
  </tr><tr>
    <td/> String to int
      <td/><code> to_int </code>     <td/> string               <td/> int
  </tr><tr>
    <td/> Int to string
      <td/><code> from_int </code>   <td/> int                  <td/> string
  </tr><tr>
    <td/> Comparison less than
      <td/><code> lt </code>         <td/> string string <td/>
  </tr><tr>
    <td/> Comparison less or equal than
      <td/><code> le </code>         <td/> string string <td/>
  </tr><tr>
    <td/> Check if it a prefix
      <td/><code> prefixof </code>  <td/> string string <td/>
  </tr><tr>
    <td/> Check if it is a suffix
      <td/><code> suffixof </code>  <td/> string string <td/>
  </tr><tr>
    <td/> Check if contains
      <td/><code> contains </code>  <td/> string string <td/>
  </tr><tr>
    <td/> Check if it is a digit
      <td/><code> is_digit </code>   <td/> string <td/>
  </tr>


</table>}
   *)


  constant empty : string = ""
  (** the empty string. *)

  function concat string string : string
  (** `concat s1 s2` is the concatenation of `s1` and `s2`.  *)

  axiom concat_assoc: forall s1 s2 s3.
    concat (concat s1 s2) s3 = concat s1 (concat s2 s3)

  axiom concat_empty: forall s.
    concat s empty = concat empty s = s

  function length string : int
  (** `length s` is the length of the string `s`. *)

  (* axiom length_nonneg: forall s. length s >= 0 *)

  axiom length_empty: length "" = 0

  axiom length_concat: forall s1 s2.
    length (concat s1 s2) = length s1 + length s2

  predicate lt string string
  (** `lt s1 s2` returns `True` iff `s1` is lexicographically smaller
  than `s2`. *)

  axiom lt_empty: forall s.
    s <> empty -> lt empty s

  axiom lt_not_com: forall s1 s2.
    lt s1 s2 -> not (lt s2 s1)

  axiom lt_ref: forall s1. not (lt s1 s1)

  axiom lt_trans: forall s1 s2 s3.
    lt s1 s2 && lt s2 s3 -> lt s1 s3

  predicate le string string
  (** `le s1 s2` returns `True` iff `s1` is lexicographically smaller
  or equal than `s2`. *)

  axiom le_empty: forall s.
    le empty s

  axiom le_ref: forall s1.
    le s1 s1

  axiom lt_le: forall s1 s2.
    lt s1 s2 -> le s1 s2

  axiom lt_le_eq: forall s1 s2.
    le s1 s2 -> lt s1 s2 || s1 = s2

  axiom le_trans: forall s1 s2 s3.
    le s1 s2 && le s2 s3 -> le s1 s3

  function s_at string int : string
  (** `s_at s i` is:

       (1) `empty`, if either `i < 0` or `i >= length s`;

       (2) the string of length `1` containing the character of
           position `i` in string `s`, if `0 <= i < length s`. *)

  axiom at_out_of_range: forall s i.
    i < 0 || i >= length s -> s_at s i = empty

  axiom at_empty: forall i.
    s_at empty i = empty

  axiom at_length: forall s i.
    let j = s_at s i in
    if 0 <= i < length s then length j = 1 else length j = 0

  axiom concat_at: forall s1 s2.
    let s = concat s1 s2 in
    forall i. (0 <= i < length s1 -> s_at s i = s_at s1 i) &&
              (length s1 <= i < length s -> s_at s i = s_at s2 (i - length s1))

  function substring string int int : string
  (** `substring s i x` is:

      (1) the `empty` string if `i < 0`, `i >= length s`, or `x <= 0`;

      (2) the substring of `s` starting at `i` and of length
          `min x (length s - i)`. *)

  axiom substring_out_of_range: forall s i x.
    i < 0 || i >= length s -> substring s i x = empty

  axiom substring_of_length_zero_or_less: forall s i x.
    x <= 0 -> substring s i x = ""

  axiom substring_of_empty: forall i x.
    substring "" i x = ""

  axiom substring_smaller: forall s i x.
    length (substring s i x) <= length s

  axiom substring_smaller_x: forall s i x.
    x >= 0 -> length (substring s i x) <= x

  axiom substring_length: forall s i x.
    x >= 0 && 0 <= i < length s ->
      if i + x > length s then
        length (substring s i x) = length s - i
      else length (substring s i x) = x

  axiom substring_at: forall s i.
    s_at s i = substring s i 1

  axiom substring_substring:
    forall s ofs len ofs' len'.
    0 <= ofs <= length s -> 0 <= len -> ofs + len <= length s ->
    0 <= ofs' <= len -> 0 <= len' -> ofs' + len' <= len ->
    substring (substring s ofs len) ofs' len' = substring s (ofs + ofs') len'

  axiom concat_substring:
    forall s ofs len len'.
    0 <= ofs <= length s -> 0 <= len -> ofs + len <= length s ->
    0 <= len' -> 0 <= ofs + len + len' <= length s ->
    concat (substring s ofs len) (substring s (ofs+len) len') =
    substring s ofs (len + len')

  predicate prefixof string string
  (** `prefixof s1 s2` is `True` iff `s1` is a prefix of `s2`. *)

  axiom prefixof_substring: forall s1 s2.
    prefixof s1 s2 <-> s1 = substring s2 0 (length s1)

  axiom prefixof_concat: forall s1 s2.
    prefixof s1 (concat s1 s2)

  axiom prefixof_empty: forall s2.
    prefixof "" s2

  axiom prefixof_empty2: forall s1.
    s1 <> empty -> not (prefixof s1 "")

  predicate suffixof string string
  (** `suffixof s1 s2` is `True` iff `s1` is a suffix of `s2`. *)

  axiom suffixof_substring: forall s1 s2.
    suffixof s1 s2 <-> s1 = substring s2 (length s2 - length s1) (length s1)

  axiom suffixof_concat: forall s1 s2.
    suffixof s2 (concat s1 s2)

  axiom suffixof_empty: forall s2.
    suffixof "" s2

  axiom suffixof_empty2: forall s1.
    s1 <> empty -> not (suffixof s1 "")

  predicate contains string string
  (** `contains s1 s2` is `True` iff `s1` contains `s2`. *)

  axiom contains_prefixof: forall s1 s2.
    prefixof s1 s2 -> contains s2 s1

  axiom contains_suffixof: forall s1 s2.
    suffixof s1 s2 -> contains s2 s1

  axiom contains_empty: forall s2.
    contains "" s2 <-> s2 = empty

  axiom contains_empty2: forall s1.
    contains s1 ""

  axiom contains_substring: forall s1 s2 i.
    substring s1 i (length s2) = s2 -> contains s1 s2

  (*** The following should hold, but are not proved by SMT provers *)
  (*** axiom substring_contains: forall s1 s2.
    contains s1 s2 -> exists i. substring s1 i (length s2) = s2 *)

  axiom contains_concat: forall s1 s2.
    contains (concat s1 s2) s1 && contains (concat s1 s2) s2

  axiom contains_at: forall s1 s2 i.
    s_at s1 i = s2 -> contains s1 s2

  (*** The following should hold, but are not proved by SMT provers *)
  (*** axiom at_contains: forall s1 s2.
    contains s1 s2 && length s2 = 1 -> exists i. s_at s1 i = s2 *)

  function indexof string string int : int
  (** `indexof s1 s2 i` is:

      (1) the first occurrence of `s2` in `s1` after `i`, if `0 <= i <=
          length s1` (note: the result is `i`, if `s2 = empty` and `0
          <= i <= length s1`);

      (2) `-1`, if `i < 0`, `i > length s1`, or `0 <= i <= length s1`
          and `s2` does not occur in `s1` after `i`.  *)

  axiom indexof_empty: forall s i.
    0 <= i <= length s -> indexof s "" i = i

  axiom indexof_empty1: forall s i.
    let j = indexof "" s i in
    j = -1 || (s = "" && i = j = 0)

  axiom indexof_contains: forall s1 s2.
    let j = indexof s1 s2 0 in
    contains s1 s2 ->
      0 <= j <= length s1 && substring s1 j (length s2) = s2

  axiom contains_indexof: forall s1 s2 i.
    indexof s1 s2 i >= 0 -> contains s1 s2

  axiom not_contains_indexof: forall s1 s2 i.
    not (contains s1 s2)  -> indexof s1 s2 i = -1

  axiom substring_indexof: forall s1 s2 i.
    let j = indexof s1 s2 i in
    j >= 0 -> substring s1 j (length s2) = s2

  axiom indexof_out_of_range: forall i s1 s2.
    not (0 <= i <= length s1) -> indexof s1 s2 i = -1

  axiom indexof_in_range: forall s1 s2 i.
    let j = indexof s1 s2 i in
    0 <= i <= length s1 -> j = -1 || i <= j <= length s1

  axiom indexof_contains_substring: forall s1 s2 i.
    0 <= i <= length s1 && contains (substring s1 i (length s1 - i)) s2 ->
      i <= indexof s1 s2 i <= length s1

  function replace string string string : string
  (** `replace s1 s2 s3` is:

      (1) `concat s3 s1`, if `s2 = empty`;

      (2) the string obtained by replacing the first occurrence of `s2`
          (if any) by `s3` in `s1`. *)

  axiom replace_empty: forall s1 s3.
    replace s1 "" s3 = concat s3 s1

  axiom replace_not_contains: forall s1 s2 s3.
    not (contains s1 s2) -> replace s1 s2 s3 = s1

  axiom replace_empty2: forall s2 s3.
    let s4 = replace empty s2 s3 in
    if s2 = empty then s4 = s3 else s4 = empty

  axiom replace_substring_indexof: forall s1 s2 s3.
    let j = indexof s1 s2 0 in
    replace s1 s2 s3 =
      if j < 0 then s1 else
        concat (concat (substring s1 0 j) s3)
               (substring s1 (j + length s2) (length s1 - j - length s2))

  (*** Not in SMT-LIB standard, but in CVC4 *)
  function replaceall string string string : string
  (** `replaceall s1 s2 s3` is:

      (1) `s1`, if `s2 = empty`;

      (2) the string obtained by replacing all occurrences of `s2` by
          `s3` in `s1`. *)

  axiom replaceall_empty1: forall s1 s3.
    replaceall s1 "" s3 = s1

  axiom not_contains_replaceall: forall s1 s2 s3.
    not (contains s1 s2) -> replaceall s1 s2 s3 = s1

  function to_int string : int
  (** `to_int s` is:

      (1) an `int` consisting on the digits of `s`, if `s` contains
          exclusively ascii characters in the range 0x30 ... 0x39;

      (2) `-1`, if `s` contains a character that is not in the range
          0x30 ... 0x39. *)

  axiom to_int_gt_minus_1: forall s. to_int s >= -1

  axiom to_int_empty: to_int "" = -1

  (*** The following lemmas should hold, but CVC4 is not able to prove them *)
  (*** axiom to_int_only_digits: forall s.
        s <> empty &&
          (forall i. 0 <= i < length s -> le "0" (s_at s i) && le (s_at s i) "9")
            -> to_int s >= 0 *)

  (*** axiom to_int_lt_0: forall s i.
         0 <= i < length s && lt (s_at s i) "0"
             -> to_int s = -1 *)

  (*** In SMT-Lib now *)
  predicate is_digit (s:string) = 0 <= to_int s <= 9 && length s = 1
  (** `is_digit s` returns `True` iff `s` is of length `1` and
      corresponds to a decimal digit, that is, to a code point in the
      range 0x30 ... 0x39 *)

  function from_int int : string
  (** `from_int i` is:

      (1) the corresponding string in the decimal notation if `i >= 0`;

      (2) `empty`, if `i < 0`. *)

  axiom from_int_negative: forall i.
    i < 0 <-> from_int i = empty

  axiom from_int_to_int: forall i.
    if i >= 0 then to_int (from_int i) = i else to_int (from_int i) = -1

end

(** {2 Characters} *)

module Char

  use String
  use int.Int

  (** to be mapped into the OCaml char type. *)
  type char = abstract {
    contents: string;
  } invariant {
    length contents = 1
  }

  axiom char_eq: forall c1 c2.
    c1.contents = c2.contents -> c1 = c2

  function code char : int

  axiom code: forall c. 0 <= code c < 256

  function chr (n: int) : char

  axiom code_chr: forall n. 0 <= n < 256 -> code (chr n) = n

  axiom chr_code: forall c. chr (code c) = c

  function get (s: string) (i: int) : char

  axiom get: forall s i.
    0 <= i < length s -> (get s i).contents = s_at s i

  axiom substring_get:
    forall s ofs len i.
    0 <= ofs <= length s -> 0 <= len -> ofs + len <= length s -> 0 <= i < len ->
    get (substring s ofs len) i = get s (ofs + i)

  lemma concat_first: forall s1 s2.
    let s3 = concat s1 s2 in
    forall i. 0 <= i < length s1 ->
      get s3 i = get s1 i

  lemma concat_second: forall s1 s2.
    let s3 = concat s1 s2 in
    forall i. length s1 <= i < length s1 + length s2 ->
      get s3 i = get s2 (i - length s1)

  function ([]) (s: string) (i: int) : char = get s i

  predicate eq_string (s1 s2: string) = length s1 = length s2 &&
    (forall i. 0 <= i < length s1 -> get s1 i = get s2 i)

  axiom extensionality [@W:non_conservative_extension:N]:
    forall s1 s2. eq_string s1 s2 -> s1 = s2

  meta extensionality predicate eq_string

  function make (size: int) (v: char) : string

  axiom make_length: forall size v. size >= 0 ->
    length (make size v) = size

  axiom make_contents: forall size v. size >= 0 ->
    (forall i. 0 <= i < size -> get (make size v) i = v)

end

(** {3 Programming API}

  The following program functions are mapped to OCaml's functions.
  See also module `io.StdIO`. *)

module OCaml

  use int.Int
  use mach.int.Int63
  use String
  use Char

  (* In OCaml max_string_length is 144_115_188_075_855_863 *)

  val eq_char (c1 c2: char) : bool
    ensures { result <-> c1 = c2 }

  val get (s: string) (i: int63) : char
    requires { 0 <= i < length s }
    ensures  { result = get s i }

  let ([]) (s: string) (i: int63) : char
    requires { 0 <= i < length s }
    ensures  { result = get s i }
  = get s i

  val code (c: char) : int63
    ensures { result = code c }

  val chr (n: int63) : char
    requires { 0 <= n < 256 }
    ensures  { result = chr n }

  val (=) (x y: string) : bool
    ensures { result <-> x = y }

  val partial length (s: string) : int63
    ensures { result = length s >= 0 }

  val sub (s: string) (start: int63) (len: int63) : string
    requires { 0 <= start <= length s }
    requires { 0 <= len <= length s - start }
    ensures  { result = substring s start len }

  val concat (s1 s2: string) : string
    ensures  { result = concat s1 s2 }

  val make (size: int63) (v: char) : string
    requires { 0 <= size }
    ensures  { result = make size v }

end

(** The following module is extracted to OCaml's Buffer *)

module StringBuffer

  use int.Int
  use mach.int.Int63
  use String
  use Char
  use OCaml

  type buffer = abstract {
    mutable str: string;
  }
  meta coercion function str

  val create (_: int63) : buffer
    ensures { result.str = "" }

  val length (b: buffer) : int63
    ensures { result = length b.str }

  val contents (b: buffer) : string
    ensures { result = b.str }

  val clear (b: buffer) : unit
    writes  { b }
    ensures { b.str = "" }

  val reset (b: buffer) : unit
    writes  { b }
    ensures { b.str = "" }

  val sub (b: buffer) (ofs len: int63) : string
    requires { 0 <= ofs /\ 0 <= len /\ ofs + len <= length b.str }
    ensures  { result = substring b.str ofs len }

  val add_char (b: buffer) (c: char) : unit
    writes   { b }
    ensures  { b.str = concat (old b.str) c.Char.contents }

  val add_string (b: buffer) (s: string) : unit
    writes   { b }
    ensures  { b.str = concat (old b.str) s }

  val truncate (b: buffer) (n: int63) : unit
    requires { 0 <= n <= length b.str }
    writes   { b }
    ensures  { b.str = substring (old b.str) 0 n }

end

(** {2 String realization}

This module is intended for string realization. It clones the `String`
module replacing axioms by goals.

*)

module StringRealization

  clone export String
    with goal .
  (** trick to remove axioms from the `String` theory. See file
     `examples/stdlib/stringCheck.mlw` *)

end

(** {2 Regular expressions} *)

module RegExpr

  use String as S

  type re
  (** type for regular expressions *)

  function to_re string : re
  (** string to regular expression injection *)

  predicate in_re string re
  (** regular expression membership *)

  function concat re re : re
  (** regular expressions concatenation, left associativity *)

  function union re re : re
  (** regular expressions union, left associativity *)

  function inter re re : re
  (** regular expressions intersection, left associativity *)

  function star re : re
  (** Kleene closure *)

  function plus re : re
  (** Kleene cross *)
  (*** forall re. plus re = concat re (star re) *)

  constant none : re
  (** the empty set of strings *)

  constant allchar : re
  (** the set of all strings of length 1 *)

  constant all : re = star allchar
  (** the set of all strings *)

  function opt re : re
  (** regular expression option *)
  (*** forall re. opt re = union re (to_re "") *)

  function range string string : re
  (** `range s1 s2` is the set of singleton strings such that all
  element `s` of `range s1 s2` satisfies the condition `Str.<= s1 s`
  and `Str.<= s s2`. *)

  function power int re : re
  (** `power n r` is the `n`th power of `r`; `n` must be an
      integer literal. *)
  (*** power 0 e = to_re ""
     power n e = concat e (power (n-1) e) *)

  function loop int int re : re
  (** `loop n1 n2 r = if n1 > ne then none else
                    if n1 = n2 then power n1 r else
                    union (power n1 e) (loop (n1+1) n2 e)` *)
  (*** `n1` and `n2` must be literals. *)

end