1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
|
(** {1 Unbounded floating-point numbers}
See also {h <a href="https://inria.hal.science/hal-04343157">this report</a>}
*)
module UFloat
use real.RealInfix
use real.FromInt
use real.Abs
use ieee_float.RoundingMode
type t
val function uround mode real : t
val function to_real t : real
val function of_int int : t
axiom to_real_of_int : forall x [of_int x]. to_real (of_int x) = from_int x
val function uzero : t
axiom uzero_spec : to_real uzero = 0.0
val function uone : t
axiom uone_spec : to_real uone = 1.0
val function utwo : t
axiom utwo_spec : to_real utwo = 2.0
constant eps:real
constant eta:real
axiom eps_bounds : 0. <. eps <. 1.
axiom eta_bounds : 0. <. eta <. 1.
(* To avoid "inline_trivial" to break the forward_propagation strategy *)
meta "inline:no" function eps
meta "inline:no" function eta
let function uadd (x y:t) : t
(* TODO: Do we want the two first assertions in our context ?
We only use them to prove the addition lemma *)
ensures { abs (to_real result -. (to_real x +. to_real y)) <=. abs (to_real x) }
ensures { abs (to_real result -. (to_real x +. to_real y)) <=. abs (to_real y) }
ensures {
abs (to_real result -. (to_real x +. to_real y))
<=. abs (to_real x +. to_real y) *. eps
}
= uround RNE (to_real x +. to_real y)
let function usub (x y:t) : t
(* TODO: Do we want the two first assertions in our context ?
We only use them to prove the addition lemma *)
ensures { abs (to_real result -. (to_real x -. to_real y)) <=. abs (to_real x) }
ensures { abs (to_real result -. (to_real x -. to_real y)) <=. abs (to_real y) }
ensures {
abs (to_real result -. (to_real x -. to_real y))
<=. abs (to_real x -. to_real y) *. eps
}
= uround RNE (to_real x -. to_real y)
let function umul (x y:t) : t
ensures {
abs (to_real result -. (to_real x *. to_real y))
<=. abs (to_real x *. to_real y) *. eps +. eta
}
= uround RNE (to_real x *. to_real y)
let function udiv (x y:t) : t
requires { to_real y <> 0. }
ensures {
abs (to_real result -. (to_real x /. to_real y))
<=. abs (to_real x /. to_real y) *. eps +. eta
}
= uround RNE (to_real x /. to_real y)
let function uminus (x:t) : t
ensures { to_real result = -. (to_real x) }
= uround RNE (-. (to_real x))
predicate is_exact (uop : t -> t -> t) (x y :t)
(* Exact division but can still underflow, giving eta as error *)
let function udiv_exact (x y:t) : t
requires { to_real y <> 0. }
requires { is_exact udiv x y }
ensures { abs (to_real result -. (to_real x /. to_real y)) <=. eta }
= uround RNE (to_real x /. to_real y)
(** Infix operators *)
let function ( ++. ) (x:t) (y:t) : t = uadd x y
let function ( --. ) (x:t) (y:t) : t = usub x y
let function ( **. ) (x:t) (y:t) : t = umul x y
(* Why3 doesn't support abbreviations so we need to add the requires *)
let function ( //. ) (x:t) (y:t) : t
requires { to_real y <> 0. }
= udiv x y
let function ( --._ ) (x:t) : t = uminus x
let function ( ///. ) (x:t) (y:t) : t
requires { to_real y <> 0. }
requires { is_exact udiv x y }
= udiv_exact x y
(* Some constants *)
constant u0:t
axiom to_real_u0 : to_real u0 = 0.0
constant u1:t
axiom to_real_u1 : to_real u1 = 1.0
constant u2:t
axiom to_real_u2 : to_real u2 = 2.0
constant u4:t
axiom to_real_u4 : to_real u4 = 4.0
constant u8:t
axiom to_real_u8 : to_real u8 = 8.0
constant u16:t
axiom to_real_u16 : to_real u16 = 16.0
constant u32:t
axiom to_real_u32 : to_real u32 = 32.0
constant u64:t
axiom to_real_u64 : to_real u64 = 64.0
constant u128:t
axiom to_real_u128 : to_real u128 = 128.0
constant u256:t
axiom to_real_u256 : to_real u256 = 256.0
constant u512:t
axiom to_real_u512 : to_real u512 = 512.0
constant u1024:t
axiom to_real_u1024 : to_real u1024 = 1024.0
constant u2048:t
axiom to_real_u2048 : to_real u2048 = 2048.0
constant u4096:t
axiom to_real_u4096 : to_real u4096 = 4096.0
constant u8192:t
axiom to_real_u8192 : to_real u8192 = 8192.0
constant u16384:t
axiom to_real_u16384 : to_real u16384 = 16384.0
constant u32768:t
axiom to_real_u32768 : to_real u32768 = 32768.0
constant u65536:t
axiom to_real_u65536 : to_real u65536 = 65536.0
predicate is_positive_power_of_2 (x:t) =
x = u1 \/ x = u2 || x = u4 || x = u8 || x = u16 || x = u32 || x = u64
|| x = u128 \/ x = u256 || x = u4096 || x = u8192 || x = u16384 || x = u32768
|| x = u65536
axiom div_by_positive_power_of_2_is_exact :
forall x y. is_positive_power_of_2 y -> is_exact udiv x y
end
(** {2 Single-precision unbounded floats} *)
module USingle
use real.RealInfix
type usingle
constant eps:real = 0x1p-24 /. (1. +. 0x1p-24)
constant eta:real = 0x1p-150
clone export UFloat with
type t = usingle,
constant eps = eps,
constant eta = eta,
axiom.
end
(** {3 Double-precision unbounded floats} *)
module UDouble
use real.RealInfix
type udouble
constant eps:real = 0x1p-53 /. (1. +. 0x1p-53)
constant eta:real = 0x1p-1075
clone export UFloat with
type t = udouble,
constant eps = eps,
constant eta = eta,
axiom.
end
(* Helper lemmas to help the proof of propagation lemmas *)
module HelperLemmas
use real.RealInfix
use real.Abs
let ghost div_order_compat (x y z:real)
requires { x <=. y }
requires { 0. <. z }
ensures { x /. z <=. y /. z }
= ()
let ghost div_order_compat2 (x y z:real)
requires { x <=. y }
requires { 0. >. z }
ensures { y /. z <=. x /. z }
= ()
let ghost mult_err (x x_exact x_factor x_rel x_abs y:real)
requires { 0. <=. x_rel }
requires { 0. <=. x_abs }
requires { abs x_exact <=. x_factor }
requires { abs (x -. x_exact) <=. x_rel *. x_factor +. x_abs }
ensures { abs (x *. y -. x_exact *. y) <=. x_rel *. abs (x_factor *. y) +. x_abs *. abs y }
=
assert {
y >=. 0. ->
abs (x *. y -. x_exact *. y) <=. abs (x_rel *. x_factor *. y) +. x_abs *. abs y
by
(x_exact -. x_rel *. x_factor -. x_abs) *. y <=. x *. y <=. (x_exact +. x_rel *. x_factor +. x_abs) *. y
};
assert {
y <. 0. ->
abs (x *. y -. x_exact *. y) <=. abs (x_rel *. x_factor *. y) +. x_abs *. abs y
by
(x_exact +. x_rel *. x_factor +. x_abs) *. y <=. x *. y <=. (x_exact -. x_rel *. x_factor -. x_abs) *. y
}
let ghost mult_err_combine (x x_exact x_factor x_rel x_abs y exact_y y_factor y_rel y_abs:real)
requires { 0. <=. x_rel }
requires { 0. <=. y_rel }
requires { 0. <=. x_abs }
requires { 0. <=. y_abs }
requires { abs x_exact <=. x_factor }
requires { abs exact_y <=. y_factor }
requires { abs (x -. x_exact) <=. x_rel *. x_factor +. x_abs }
requires { abs (y -. exact_y) <=. y_rel *. y_factor +. y_abs }
ensures {
abs (x *. y -. x_exact *. exact_y)
<=. (x_rel +. y_rel +. x_rel *. y_rel) *. (x_factor *. y_factor)
+. (y_abs +. y_abs *. x_rel) *. x_factor
+. (x_abs +. x_abs *. y_rel) *. y_factor
+. x_abs *. y_abs
}
=
mult_err x x_exact x_factor x_rel x_abs y;
mult_err y exact_y y_factor y_rel y_abs x_exact;
mult_err y exact_y y_factor y_rel y_abs x_factor;
assert {
abs (x *. y -. x_exact *. exact_y) <=. (y_rel *. x_factor *. y_factor) +. (y_abs *. x_factor) +. (x_rel *. abs (x_factor *. y)) +. x_abs *. abs y
};
assert {
abs (x *. y -. x_exact *. exact_y) <=. (y_rel *. x_factor *. y_factor) +. (x_rel *. (x_factor *. y_factor *. (1. +. y_rel) +. x_factor *. y_abs)) +. y_abs *. x_factor +. x_abs *. abs y
by
abs (x_factor *. y) <=. x_factor *. y_factor *. (1. +. y_rel) +. x_factor *. y_abs
};
assert {
x_abs *. abs y <=. x_abs *. (y_factor *. (1. +. y_rel) +. y_abs)
}
use real.ExpLog
let ghost exp_approx_err (x x_approx x_factor a b :real)
requires { abs (x_approx -. x) <=. x_factor *. a +. b }
requires { x <=. x_factor }
ensures {
abs (exp(x_approx) -. exp(x)) <=. exp(x) *. (exp(a *. x_factor +. b) -. 1.)
}
=
assert {
exp(x_approx) <=. exp(x) +. exp(x) *. (exp(a *. x_factor +. b) -. 1.)
by
exp (x_approx) <=. exp(x) *. exp (a *. x_factor +. b)
};
assert {
exp(x_approx) >=. exp(x) -. exp(x) *. (exp(a *. x_factor +. b) -. 1.)
by
exp (x_approx) >=. exp(x) *. exp (-. a *. x_factor -. b)
so
exp(x_approx) -. exp(x) >=. exp(x) *. (exp (-. a *. x_factor -. b) -. 1.)
so
exp(a *. x_factor +. b) +. exp(-.a *. x_factor -. b) >=. 2.
so
-. exp(a *. x_factor +. b) +. 1. <=. exp(-.a *. x_factor -. b) -. 1.
so
exp(x) *. ((-. exp(a *. x_factor +. b)) +. 1.) <=. exp(x) *. (exp(-. a *. x_factor -. b) -. 1.)
so
-. exp(x) *. (exp(a *. x_factor +. b) -. 1.) <=. exp(x) *. (exp(-. a *. x_factor -. b) -. 1.)
}
let lemma log_1_minus_x (x:real)
requires { 0. <=. abs x <. 1. }
ensures { log (1. +. x) <=. -. log (1. -. x) }
=
assert { 1. +. x <=. 1. /. (1. -. x) };
assert { forall x y z. 0. <=. x -> 0. <. y -> 0. <=. z -> x *. y <=. z -> x <=. z /. y };
assert { exp (-.log (1. -. x)) = 1. /. (1. -. x) }
let lemma log2_1_minus_x (x:real)
requires { 0. <=. abs x <. 1. }
ensures { log2 (1. +. x) <=. -. log2 (1. -. x) }
=
div_order_compat (log (1. +. x)) (-. log (1. -. x)) (log 2.);
log_1_minus_x x
let lemma log10_1_minus_x (x:real)
requires { 0. <=. abs x <. 1. }
ensures { log10 (1. +. x) <=. -. log10 (1. -. x) }
=
div_order_compat (log (1. +. x)) (-. log (1. -. x)) (log 10.);
log_1_minus_x x
let ghost log_approx_err (x x_approx x_factor a b :real)
requires { abs (x_approx -. x) <=. x_factor *. a +. b }
requires { 0. <. (x -. a *. x_factor -. b) }
requires { 0. <. x <=. x_factor }
ensures {
abs (log x_approx -. log x) <=. -. log(1. -. ((a *. x_factor +. b) /. x))
}
=
assert { a *. x_factor +. b = x *. ((a *. x_factor +. b) /. x) };
assert {
log (x *. (1. -. (a *. x_factor +. b) /. x))
<=. log x_approx
<=. log (x *. (1. +. (a *. x_factor +. b) /.x))
by
0. <. (x -. (a *. x_factor +. b)) <=. x_approx
};
log_1_minus_x ((a *. x_factor +. b) /. x)
let ghost log2_approx_err (x x_approx x_factor a b :real)
requires { abs (x_approx -. x) <=. x_factor *. a +. b }
requires { 0. <. (x -. a *. x_factor -. b) }
requires { 0. <. x <=. x_factor }
ensures {
abs (log2 x_approx -. log2 x) <=. -. log2(1. -. ((a *. x_factor +. b) /. x))
}
=
assert { a *. x_factor +. b = x *. ((a *. x_factor +. b) /. x) };
assert {
log2 (x *. (1. -. (a *. x_factor +. b) /. x))
<=. log2 x_approx
<=. log2 (x *. (1. +. (a *. x_factor +. b) /.x))
by
0. <. (x -. (a *. x_factor +. b)) <=. x_approx
};
log2_1_minus_x ((a *. x_factor +. b) /. x)
let ghost log10_approx_err (x x_approx x_factor a b :real)
requires { abs (x_approx -. x) <=. x_factor *. a +. b }
requires { 0. <. (x -. a *. x_factor -. b) }
requires { 0. <. x <=. x_factor }
ensures {
abs (log10 x_approx -. log10 x) <=. -. log10(1. -. ((a *. x_factor +. b) /. x))
}
=
assert { a *. x_factor +. b = x *. ((a *. x_factor +. b) /. x) };
assert {
log10 (x *. (1. -. (a *. x_factor +. b) /. x))
<=. log10 x_approx
<=. log10 (x *. (1. +. (a *. x_factor +. b) /.x))
by
0. <. (x -. (a *. x_factor +. b)) <=. x_approx
};
log10_1_minus_x ((a *. x_factor +. b) /. x)
use real.Trigonometry
lemma sin_of_approx : forall x y. abs (sin x -. sin y) <=. abs (x -. y)
lemma cos_of_approx : forall x y. abs (cos x -. cos y) <=. abs (x -. y)
use real.Sum
use int.Int
use real.FromInt
let rec ghost sum_approx_err (fi_rel fi_abs:real) (f f_exact f_factor : int -> real) (a b:int)
requires { a <= b }
requires { forall i. a <= i < b -> abs (f i -. f_exact i) <=. f_factor i *. fi_rel +. fi_abs }
variant { b - a }
ensures { abs (sum f a b -. sum f_exact a b) <=. fi_rel *. sum f_factor a b +. fi_abs *. from_int (b-a) }
=
if (a < b) then
begin
sum_approx_err fi_rel fi_abs f f_exact f_factor a (b - 1)
end
end
(** {4 Single propagation lemmas} *)
module USingleLemmas
use real.RealInfix
use real.FromInt
use real.Abs
use USingle
let lemma uadd_single_error_propagation (x_f y_f r: usingle) (x x_factor x_rel x_abs y y_factor y_rel y_abs : real)
requires {
abs (to_real x_f -. x) <=. x_rel *. x_factor +. x_abs
}
requires {
abs (to_real y_f -. y) <=. y_rel *. y_factor +. y_abs
}
requires { abs x <=. x_factor }
requires { abs y <=. y_factor }
(* TODO: Use (0 <=. x_rel \/ (x_factor = 0 /\ x_abs = 0)), same for y. *)
requires { 0. <=. x_rel }
requires { 0. <=. y_rel }
requires { 0. <=. x_abs }
requires { 0. <=. y_abs }
requires { r = (x_f ++. y_f) }
ensures {
abs (to_real r -. (x +. y)) <=.
(x_rel +. y_rel +. eps) *. (x_factor +. y_factor)
+. ((1. +. eps +. y_rel) *. x_abs +. (1. +. eps +. x_rel) *. y_abs)
}
=
let ghost delta = abs (to_real (x_f ++. y_f) -. (to_real x_f +. to_real y_f)) in
assert {
0. <=. x_rel /\ 0. <=. y_rel ->
delta <=.
(eps +. y_rel) *. x_factor +. (eps +. x_rel) *. y_factor
+. (x_rel +. eps) *. y_abs +. (y_rel +. eps) *. x_abs
by
(delta <=. x_factor *. x_rel +. x_abs +. x_factor
so
x_factor +. x_abs <=. eps *. (y_factor +. y_abs) ->
delta <=. (eps +. x_rel) *. y_factor
+. (eps +. y_rel) *. x_factor
+. (y_rel +. eps) *. x_abs +. (x_rel +. eps) *. y_abs
by
delta <=. eps *. (y_factor +. y_abs) *. x_rel
+. (eps *. (y_factor +. y_abs)))
/\
(delta <=. y_factor *. y_rel +. y_abs +. y_factor
so
abs y_factor +. y_abs <=. eps *. (x_factor +. x_abs) ->
delta <=. (eps +. y_rel) *. x_factor
+. (eps +. x_rel) *. y_factor
+. (x_rel +. eps) *. y_abs +. (y_rel +. eps) *. x_abs
by
delta <=. eps *. (x_factor +. x_abs) *. y_rel
+. (eps *. (x_factor +. x_abs)))
/\
(
(eps *. (x_factor +. x_abs) <. abs y_factor +. y_abs /\
eps *. (y_factor +. y_abs) <. abs x_factor +. x_abs) ->
(delta <=.
(eps +. y_rel) *. x_factor +. (eps +. x_rel) *. y_factor
+. (x_rel +. eps) *. y_abs +. (y_rel +. eps) *. x_abs
by
abs (to_real x_f +. to_real y_f) <=.
abs (to_real x_f -. x) +. x_factor +. (abs (to_real y_f -. y) +. y_factor)
so
x_factor *. x_rel <=. (y_factor +. y_abs) /. eps *. x_rel /\
y_factor *. y_rel <=. (x_factor +. x_abs) /. eps *. y_rel))
}
let lemma usub_single_error_propagation (x_f y_f r : usingle) (x x_factor x_rel x_abs y y_factor y_rel y_abs : real)
requires {
abs (to_real x_f -. x) <=. x_rel *. x_factor +. x_abs
}
requires {
abs (to_real y_f -. y) <=. y_rel *. y_factor +. y_abs
}
requires { abs x <=. x_factor }
requires { abs y <=. y_factor }
requires { 0. <=. x_abs }
requires { 0. <=. y_abs }
requires { 0. <=. x_rel }
requires { 0. <=. y_rel }
requires { r = x_f --. y_f }
ensures {
abs (to_real r -. (x -. y))
<=. (x_rel +. y_rel +. eps) *. (x_factor +. y_factor)
+. ((1. +. eps +. y_rel) *. x_abs +. (1. +. eps +. x_rel) *. y_abs)
}
= uadd_single_error_propagation x_f (--. y_f) r x x_factor x_rel x_abs (-. y) y_factor y_rel y_abs
use HelperLemmas
let lemma umul_single_error_propagation (x_f y_f r : usingle) (x x_factor x_rel x_abs y y_factor y_rel y_abs : real)
requires {
abs (to_real x_f -. x) <=. x_rel *. x_factor +. x_abs
}
requires {
abs (to_real y_f -. y) <=. y_rel *. y_factor +. y_abs
}
requires { abs x <=. x_factor }
requires { abs y <=. y_factor }
requires { 0. <=. x_rel }
requires { 0. <=. y_rel }
requires { 0. <=. x_abs }
requires { 0. <=. y_abs }
requires { r = x_f **. y_f }
ensures {
abs (to_real r -. (x *. y)) <=.
(eps +. (x_rel +. y_rel +. x_rel *. y_rel) *. (1. +. eps)) *. (x_factor *. y_factor)
+. (((y_abs +. y_abs *. x_rel) *. x_factor
+. (x_abs +. x_abs *. y_rel) *. y_factor
+. x_abs *. y_abs) *. (1. +. eps) +. eta)
}
=
assert {
to_real x_f *. to_real y_f -. abs (to_real x_f *. to_real y_f) *. eps -. eta
<=. to_real (x_f **. y_f)
<=. to_real x_f *. to_real y_f +. abs (to_real x_f *. to_real y_f) *. eps +. eta
};
assert { abs (x *. y) <=. x_factor *. y_factor by
abs x *. abs y <=. x_factor *. abs y = abs y *. x_factor <=. y_factor *. x_factor };
mult_err_combine (to_real x_f) x x_factor x_rel x_abs (to_real y_f) y y_factor y_rel y_abs
use real.ExpLog
let lemma log_single_error_propagation (logx_f x_f : usingle)
(x_exact x_factor log_rel log_abs x_rel x_abs : real)
requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs }
requires {
abs (to_real logx_f -. log(to_real x_f))
<=. log_rel *. abs (log (to_real x_f)) +. log_abs
}
requires { 0. <. x_exact <=. x_factor }
requires { 0. <. (x_exact -. x_rel *. x_factor -. x_abs) }
requires { 0. <=. log_rel }
ensures {
abs (to_real logx_f -. log (x_exact))
<=. log_rel *. abs (log (x_exact)) +.
(-. log (1. -. ((x_rel *. x_factor +. x_abs) /. x_exact)) *. (1. +. log_rel)
+. log_abs)
}
=
log_approx_err x_exact (to_real x_f) x_factor x_rel x_abs;
assert {
abs (log (to_real x_f)) *. log_rel
<=. (abs (log (x_exact)) -. log (1.0 -. (((x_rel *. x_factor) +. x_abs) /. x_exact))) *. log_rel
}
let lemma log2_single_error_propagation (log2x_f x_f : usingle)
(x_exact x_factor log_rel log_abs x_rel x_abs : real)
requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs }
requires {
abs (to_real log2x_f -. log2(to_real x_f))
<=. log_rel *. abs (log2 (to_real x_f)) +. log_abs
}
requires { 0. <. x_exact <=. x_factor }
requires { 0. <. (x_exact -. x_rel *. x_factor -. x_abs) }
requires { 0. <=. log_rel }
ensures {
abs (to_real log2x_f -. log2 (x_exact))
<=. log_rel *. abs (log2 (x_exact)) +.
(-. log2 (1. -. ((x_rel *. x_factor +. x_abs) /. x_exact)) *. (1. +. log_rel)
+. log_abs)
}
=
log2_approx_err x_exact (to_real x_f) x_factor x_rel x_abs;
assert {
abs (log2 (to_real x_f)) *. log_rel
<=. (abs (log2 (x_exact)) -. log2 (1.0 -. (((x_rel *. x_factor) +. x_abs) /. x_exact))) *. log_rel
}
let lemma log10_single_error_propagation (log10x_f x_f : usingle)
(x_exact x_factor log_rel log_abs x_rel x_abs : real)
requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs }
requires {
abs (to_real log10x_f -. log10(to_real x_f))
<=. log_rel *. abs (log10 (to_real x_f)) +. log_abs
}
requires { 0. <. x_exact <=. x_factor }
requires { 0. <. (x_exact -. x_rel *. x_factor -. x_abs) }
requires { 0. <=. log_rel }
ensures {
abs (to_real log10x_f -. log10 (x_exact))
<=. log_rel *. abs (log10 (x_exact)) +.
(-. log10 (1. -. ((x_rel *. x_factor +. x_abs) /. x_exact)) *. (1. +. log_rel)
+. log_abs)
}
=
log10_approx_err x_exact (to_real x_f) x_factor x_rel x_abs;
assert {
abs (log10 (to_real x_f)) *. log_rel
<=. (abs (log10 (x_exact)) -. log10 (1.0 -. (((x_rel *. x_factor) +. x_abs) /. x_exact))) *. log_rel
}
let lemma exp_single_error_propagation (expx_f x_f : usingle)
(x_exact x_factor exp_rel exp_abs x_rel x_abs : real)
requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs }
requires {
abs (to_real expx_f -. exp(to_real x_f))
<=. exp_rel *. exp (to_real x_f) +. exp_abs
}
requires { x_exact <=. x_factor }
requires { 0. <=. exp_rel <=. 1. }
ensures {
abs (to_real expx_f -. exp (x_exact))
<=. (exp_rel +. (exp(x_rel *. x_factor +. x_abs) -. 1.) *. (1. +. exp_rel)) *. exp(x_exact)
+. exp_abs
}
=
exp_approx_err x_exact (to_real x_f) x_factor x_rel x_abs;
assert {
exp x_exact *. (1. -. exp_rel) -.
exp x_exact *. (exp (x_rel *. x_factor +. x_abs) -. 1.) *. (1. -. exp_rel)
-. exp_abs
<=. to_real expx_f
by
(exp x_exact -. exp x_exact *. (exp (x_rel *. x_factor +. x_abs) -. 1.))
*. (1. -. exp_rel) -. exp_abs
<=. exp (to_real x_f) *. (1. -. exp_rel) -. exp_abs
<=. to_real expx_f
};
assert {
to_real expx_f <=. (exp(x_exact) +. exp(x_exact)*.(exp(x_rel *. x_factor +. x_abs) -. 1.))*. (1. +. exp_rel) +. exp_abs
by
to_real expx_f <=. exp(to_real x_f) *. (1. +. exp_rel) +. exp_abs
};
use real.Trigonometry
let lemma sin_single_error_propagation (sinx_f x_f : usingle)
(x_exact x_factor sin_rel sin_abs x_rel x_abs : real)
requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs }
requires {
abs (to_real sinx_f -. sin(to_real x_f))
<=. sin_rel *. abs (sin (to_real x_f)) +. sin_abs
}
requires { x_exact <=. x_factor }
requires { 0. <=. sin_rel }
ensures {
abs (to_real sinx_f -. sin (x_exact))
<=. sin_rel *. abs(sin(x_exact))
+. (((x_rel *. x_factor +. x_abs) *. (1. +. sin_rel)) +. sin_abs)
}
=
assert {
abs (sin (to_real x_f)) *. sin_rel
<=. (abs (sin x_exact) +. (x_rel *. x_factor +. x_abs)) *. sin_rel
}
let lemma cos_single_error_propagation (cosx_f x_f : usingle)
(x_exact x_factor cos_rel cos_abs x_rel x_abs : real)
requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs }
requires {
abs (to_real cosx_f -. cos(to_real x_f))
<=. cos_rel *. abs (cos (to_real x_f)) +. cos_abs
}
requires { x_exact <=. x_factor }
requires { 0. <=. cos_rel }
ensures {
abs (to_real cosx_f -. cos (x_exact))
<=. cos_rel *. abs(cos(x_exact))
+. (((x_rel *. x_factor +. x_abs) *. (1. +. cos_rel)) +. cos_abs)
}
=
assert {
abs (cos (to_real x_f)) *. cos_rel
<=. (abs (cos x_exact) +. (x_rel *. x_factor +. x_abs)) *. cos_rel
}
use real.Sum
use int.Int
use real.FromInt
function real_fun (f:int -> usingle) : int -> real = fun i -> to_real (f i)
let lemma sum_single_error_propagation (x : usingle)
(f : int -> usingle) (f_exact f_factor f_factor' : int -> real) (n:int)
(sum_rel sum_abs f_rel f_abs : real)
requires {
forall i. 0 <= i < n ->
abs ((real_fun f) i -. f_exact i) <=. f_rel *. f_factor i +. f_abs
}
requires {
forall i. 0 <= i < n ->
f_factor i -. f_rel *. f_factor i -. f_abs <=. f_factor' i <=. f_factor i +. f_rel *. f_factor i +. f_abs
}
requires {
abs (to_real x -. (sum (real_fun f) 0 n))
<=. sum_rel *. (sum f_factor' 0 n) +. sum_abs
}
requires { 0. <=. sum_rel }
requires { 0 <= n }
ensures {
abs (to_real x -. sum f_exact 0 n)
<=. (f_rel +. (sum_rel *. (1. +. f_rel))) *. sum f_factor 0 n +.
((f_abs *. from_int n *.(1. +. sum_rel)) +. sum_abs)
}
=
sum_approx_err f_rel f_abs (real_fun f) f_exact f_factor 0 n;
sum_approx_err f_rel f_abs f_factor' f_factor f_factor 0 n;
assert {
sum_rel *. sum f_factor' 0 n <=.
sum_rel *. (sum f_factor 0 n +. ((f_rel *. sum f_factor 0 n) +. (f_abs *. from_int n)))
}
(* We don't have an error on y_f because in practice we won't have an exact division with an approximate divisor *)
let lemma udiv_exact_single_error_propagation (x_f y_f r: usingle) (x x_factor x_rel x_abs : real)
requires {
abs (to_real x_f -. x) <=. x_rel *. x_factor +. x_abs
}
requires { abs x <=. x_factor }
requires { 0. <=. x_rel }
requires { 0. <=. x_abs }
requires { 0. <> to_real y_f }
requires { is_exact udiv x_f y_f }
requires { r = x_f ///. y_f }
ensures {
abs (to_real r -. (x /. (to_real y_f))) <=.
x_rel *. (x_factor /. abs (to_real y_f)) +. ((x_abs /. abs (to_real y_f)) +. eta)
}
=
let lemma y_f_pos ()
requires { 0. <. to_real y_f }
ensures {
abs (to_real r -. (x /. (to_real y_f))) <=.
x_rel *. (x_factor /. to_real y_f) +. ((x_abs /. to_real y_f) +. eta)
}
=
div_order_compat (to_real x_f) (x +. x_rel *. x_factor +. x_abs) (to_real y_f);
div_order_compat (x -. x_rel *. x_factor -. x_abs) (to_real x_f) (to_real y_f) in
let lemma y_f_neg ()
requires { to_real y_f <. 0. }
ensures {
abs (to_real r -. (x /. (to_real y_f))) <=.
x_rel *. (x_factor /. abs (to_real y_f)) +. ((x_abs /. abs (to_real y_f)) +. eta)
}
=
div_order_compat2 (to_real x_f) (x +. x_rel *. x_factor +. x_abs) (to_real y_f);
(* TODO: Prove this somehow *)
assert {
forall x y. y <> 0.0 -> x /. y <=. abs x /. abs y
by abs (x /. y) = abs (x *. inv y) = abs x *. abs (inv y) = abs x *. inv (abs y) = abs x /. abs y
};
assert {
(x -. x_rel *. x_factor -. x_abs) /. to_real y_f
<=. x /. (to_real y_f) +. ((x_rel *. x_factor) +. x_abs) /. abs (to_real y_f)
by
(-. x_rel *. x_factor -. x_abs) /. to_real y_f
<=. (x_rel *. x_factor +. x_abs) /. abs (to_real y_f)
};
div_order_compat2 (x -. x_rel *. x_factor -. x_abs) (to_real x_f) (to_real y_f);
in ()
end
(** {5 Double propagation lemmas} *)
module UDoubleLemmas
use real.RealInfix
use real.FromInt
use real.Abs
use UDouble
let lemma uadd_double_error_propagation (x_f y_f r : udouble) (x x_factor x_rel x_abs y y_factor y_rel y_abs : real)
requires {
abs (to_real x_f -. x) <=. x_rel *. x_factor +. x_abs
}
requires {
abs (to_real y_f -. y) <=. y_rel *. y_factor +. y_abs
}
requires { abs x <=. x_factor }
requires { abs y <=. y_factor }
(* TODO: Use (0 <=. x_rel \/ (x_factor = 0 /\ x_abs = 0)), same for y. *)
requires { 0. <=. x_rel }
requires { 0. <=. y_rel }
requires { 0. <=. x_abs }
requires { 0. <=. y_abs }
requires { r = x_f ++. y_f }
ensures {
abs (to_real r -. (x +. y)) <=.
(x_rel +. y_rel +. eps) *. (x_factor +. y_factor)
+. ((1. +. eps +. y_rel) *. x_abs +. (1. +. eps +. x_rel) *. y_abs)
}
=
let ghost delta = abs (to_real (x_f ++. y_f) -. (to_real x_f +. to_real y_f)) in
assert {
0. <=. x_rel /\ 0. <=. y_rel ->
delta <=.
(eps +. y_rel) *. x_factor +. (eps +. x_rel) *. y_factor
+. (x_rel +. eps) *. y_abs +. (y_rel +. eps) *. x_abs
by
(delta <=. x_factor *. x_rel +. x_abs +. x_factor
so
x_factor +. x_abs <=. eps *. (y_factor +. y_abs) ->
delta <=. (eps +. x_rel) *. y_factor
+. (eps +. y_rel) *. x_factor
+. (y_rel +. eps) *. x_abs +. (x_rel +. eps) *. y_abs
by
delta <=. eps *. (y_factor +. y_abs) *. x_rel
+. (eps *. (y_factor +. y_abs)))
/\
(delta <=. y_factor *. y_rel +. y_abs +. y_factor
so
abs y_factor +. y_abs <=. eps *. (x_factor +. x_abs) ->
delta <=. (eps +. y_rel) *. x_factor
+. (eps +. x_rel) *. y_factor
+. (x_rel +. eps) *. y_abs +. (y_rel +. eps) *. x_abs
by
delta <=. eps *. (x_factor +. x_abs) *. y_rel
+. (eps *. (x_factor +. x_abs)))
/\
(
(eps *. (x_factor +. x_abs) <. abs y_factor +. y_abs /\
eps *. (y_factor +. y_abs) <. abs x_factor +. x_abs) ->
(delta <=.
(eps +. y_rel) *. x_factor +. (eps +. x_rel) *. y_factor
+. (x_rel +. eps) *. y_abs +. (y_rel +. eps) *. x_abs
by
abs (to_real x_f +. to_real y_f) <=.
abs (to_real x_f -. x) +. x_factor +. (abs (to_real y_f -. y) +. y_factor)
so
x_factor *. x_rel <=. (y_factor +. y_abs) /. eps *. x_rel /\
y_factor *. y_rel <=. (x_factor +. x_abs) /. eps *. y_rel))
}
let lemma usub_double_error_propagation (x_f y_f r : udouble) (x x_factor x_rel x_abs y y_factor y_rel y_abs : real)
requires {
abs (to_real x_f -. x) <=. x_rel *. x_factor +. x_abs
}
requires {
abs (to_real y_f -. y) <=. y_rel *. y_factor +. y_abs
}
requires { abs x <=. x_factor }
requires { abs y <=. y_factor }
requires { 0. <=. x_abs }
requires { 0. <=. y_abs }
requires { 0. <=. x_rel }
requires { 0. <=. y_rel }
requires { r = x_f --. y_f }
ensures {
abs (to_real r -. (x -. y))
<=. (x_rel +. y_rel +. eps) *. (x_factor +. y_factor)
+. ((1. +. eps +. y_rel) *. x_abs +. (1. +. eps +. x_rel) *. y_abs)
}
= uadd_double_error_propagation x_f (--. y_f) r x x_factor x_rel x_abs (-. y) y_factor y_rel y_abs
use HelperLemmas
let lemma umul_double_error_propagation (x_f y_f r : udouble) (x x_factor x_rel x_abs y y_factor y_rel y_abs : real)
requires {
abs (to_real x_f -. x) <=. x_rel *. x_factor +. x_abs
}
requires {
abs (to_real y_f -. y) <=. y_rel *. y_factor +. y_abs
}
requires { abs x <=. x_factor }
requires { abs y <=. y_factor }
requires { 0. <=. x_rel }
requires { 0. <=. y_rel }
requires { 0. <=. x_abs }
requires { 0. <=. y_abs }
requires { r = x_f **. y_f }
ensures {
abs (to_real r -. (x *. y)) <=.
(eps +. (x_rel +. y_rel +. x_rel *. y_rel) *. (1. +. eps)) *. (x_factor *. y_factor)
+. (((y_abs +. y_abs *. x_rel) *. x_factor
+. (x_abs +. x_abs *. y_rel) *. y_factor
+. x_abs *. y_abs) *. (1. +. eps) +. eta)
}
=
assert {
to_real x_f *. to_real y_f -. abs (to_real x_f *. to_real y_f) *. eps -. eta
<=. to_real (x_f **. y_f)
<=. to_real x_f *. to_real y_f +. abs (to_real x_f *. to_real y_f) *. eps +. eta
};
assert { abs (x *. y) <=. x_factor *. y_factor by
abs x *. abs y <=. x_factor *. abs y = abs y *. x_factor <=. y_factor *. x_factor };
mult_err_combine (to_real x_f) x x_factor x_rel x_abs (to_real y_f) y y_factor y_rel y_abs
use real.ExpLog
let lemma log_double_error_propagation (logx_f x_f : udouble)
(x_exact x_factor log_rel log_abs x_rel x_abs : real)
requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs }
requires {
abs (to_real logx_f -. log(to_real x_f))
<=. log_rel *. abs (log (to_real x_f)) +. log_abs
}
requires { 0. <. x_exact <=. x_factor }
requires { 0. <. (x_exact -. x_rel *. x_factor -. x_abs) }
requires { 0. <=. log_rel }
ensures {
abs (to_real logx_f -. log (x_exact))
<=. log_rel *. abs (log (x_exact)) +.
(-. log (1. -. ((x_rel *. x_factor +. x_abs) /. x_exact)) *. (1. +. log_rel)
+. log_abs)
}
=
log_approx_err x_exact (to_real x_f) x_factor x_rel x_abs;
assert {
abs (log (to_real x_f)) *. log_rel
<=. (abs (log (x_exact)) -. log (1.0 -. (((x_rel *. x_factor) +. x_abs) /. x_exact))) *. log_rel
}
let lemma log2_double_error_propagation (log2x_f x_f : udouble)
(x_exact x_factor log_rel log_abs x_rel x_abs : real)
requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs }
requires {
abs (to_real log2x_f -. log2(to_real x_f))
<=. log_rel *. abs (log2 (to_real x_f)) +. log_abs
}
requires { 0. <. x_exact <=. x_factor }
requires { 0. <. (x_exact -. x_rel *. x_factor -. x_abs) }
requires { 0. <=. log_rel }
ensures {
abs (to_real log2x_f -. log2 (x_exact))
<=. log_rel *. abs (log2 (x_exact)) +.
(-. log2 (1. -. ((x_rel *. x_factor +. x_abs) /. x_exact)) *. (1. +. log_rel)
+. log_abs)
}
=
log2_approx_err x_exact (to_real x_f) x_factor x_rel x_abs;
assert {
abs (log2 (to_real x_f)) *. log_rel
<=. (abs (log2 (x_exact)) -. log2 (1.0 -. (((x_rel *. x_factor) +. x_abs) /. x_exact))) *. log_rel
}
let lemma log10_double_error_propagation (log10x_f x_f : udouble)
(x_exact x_factor log_rel log_abs x_rel x_abs : real)
requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs }
requires {
abs (to_real log10x_f -. log10(to_real x_f))
<=. log_rel *. abs (log10 (to_real x_f)) +. log_abs
}
requires { 0. <. x_exact <=. x_factor }
requires { 0. <. (x_exact -. x_rel *. x_factor -. x_abs) }
requires { 0. <=. log_rel }
ensures {
abs (to_real log10x_f -. log10 (x_exact))
<=. log_rel *. abs (log10 (x_exact)) +.
(-. log10 (1. -. ((x_rel *. x_factor +. x_abs) /. x_exact)) *. (1. +. log_rel)
+. log_abs)
}
=
log10_approx_err x_exact (to_real x_f) x_factor x_rel x_abs;
assert {
abs (log10 (to_real x_f)) *. log_rel
<=. (abs (log10 (x_exact)) -. log10 (1.0 -. (((x_rel *. x_factor) +. x_abs) /. x_exact))) *. log_rel
}
let lemma exp_double_error_propagation (expx_f x_f : udouble)
(x_exact x_factor exp_rel exp_abs x_rel x_abs : real)
requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs }
requires {
abs (to_real expx_f -. exp(to_real x_f))
<=. exp_rel *. exp (to_real x_f) +. exp_abs
}
requires { x_exact <=. x_factor }
requires { 0. <=. exp_rel <=. 1. }
ensures {
abs (to_real expx_f -. exp (x_exact))
<=. (exp_rel +. (exp(x_rel *. x_factor +. x_abs) -. 1.) *. (1. +. exp_rel)) *. exp(x_exact)
+. exp_abs
}
=
exp_approx_err x_exact (to_real x_f) x_factor x_rel x_abs;
assert {
exp x_exact *. (1. -. exp_rel) -.
exp x_exact *. (exp (x_rel *. x_factor +. x_abs) -. 1.) *. (1. -. exp_rel)
-. exp_abs
<=. to_real expx_f
by
(exp x_exact -. exp x_exact *. (exp (x_rel *. x_factor +. x_abs) -. 1.))
*. (1. -. exp_rel) -. exp_abs
<=. exp (to_real x_f) *. (1. -. exp_rel) -. exp_abs
<=. to_real expx_f
};
assert {
to_real expx_f <=. (exp(x_exact) +. exp(x_exact)*.(exp(x_rel *. x_factor +. x_abs) -. 1.))*. (1. +. exp_rel) +. exp_abs
by
to_real expx_f <=. exp(to_real x_f) *. (1. +. exp_rel) +. exp_abs
};
use real.Trigonometry
let lemma sin_double_error_propagation (sinx_f x_f : udouble)
(x_exact x_factor sin_rel sin_abs x_rel x_abs : real)
requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs }
requires {
abs (to_real sinx_f -. sin(to_real x_f))
<=. sin_rel *. abs (sin (to_real x_f)) +. sin_abs
}
requires { x_exact <=. x_factor }
requires { 0. <=. sin_rel }
ensures {
abs (to_real sinx_f -. sin (x_exact))
<=. sin_rel *. abs(sin(x_exact))
+. (((x_rel *. x_factor +. x_abs) *. (1. +. sin_rel)) +. sin_abs)
}
=
assert {
abs (sin (to_real x_f)) *. sin_rel
<=. (abs (sin x_exact) +. (x_rel *. x_factor +. x_abs)) *. sin_rel
}
let lemma cos_double_error_propagation (cosx_f x_f : udouble)
(x_exact x_factor cos_rel cos_abs x_rel x_abs : real)
requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs }
requires {
abs (to_real cosx_f -. cos(to_real x_f))
<=. cos_rel *. abs (cos (to_real x_f)) +. cos_abs
}
requires { x_exact <=. x_factor }
requires { 0. <=. cos_rel }
ensures {
abs (to_real cosx_f -. cos (x_exact))
<=. cos_rel *. abs(cos(x_exact))
+. (((x_rel *. x_factor +. x_abs) *. (1. +. cos_rel)) +. cos_abs)
}
=
assert {
abs (cos (to_real x_f)) *. cos_rel
<=. (abs (cos x_exact) +. (x_rel *. x_factor +. x_abs)) *. cos_rel
}
use real.Sum
use int.Int
use real.FromInt
function real_fun (f:int -> udouble) : int -> real = fun i -> to_real (f i)
let lemma sum_double_error_propagation (x : udouble)
(f : int -> udouble) (f_exact f_factor f_factor' : int -> real) (n:int)
(sum_rel sum_abs f_rel f_abs : real)
requires {
forall i. 0 <= i < n ->
abs ((real_fun f) i -. f_exact i) <=. f_rel *. f_factor i +. f_abs
}
requires {
forall i. 0 <= i < n ->
f_factor i -. f_rel *. f_factor i -. f_abs <=. f_factor' i <=. f_factor i +. f_rel *. f_factor i +. f_abs
}
requires {
abs (to_real x -. (sum (real_fun f) 0 n))
<=. sum_rel *. (sum f_factor' 0 n) +. sum_abs
}
requires { 0. <=. sum_rel }
requires { 0 <= n }
ensures {
abs (to_real x -. sum f_exact 0 n)
<=. (f_rel +. (sum_rel *. (1. +. f_rel))) *. sum f_factor 0 n +.
((f_abs *. from_int n *.(1. +. sum_rel)) +. sum_abs)
}
=
sum_approx_err f_rel f_abs (real_fun f) f_exact f_factor 0 n;
sum_approx_err f_rel f_abs f_factor' f_factor f_factor 0 n;
assert {
sum_rel *. sum f_factor' 0 n <=.
sum_rel *. (sum f_factor 0 n +. ((f_rel *. sum f_factor 0 n) +. (f_abs *. from_int n)))
}
(* We don't have an error on y_f because in practice we won't have an exact division with an approximate divisor *)
let lemma udiv_exact_single_error_propagation (x_f y_f r: udouble) (x x_factor x_rel x_abs : real)
requires {
abs (to_real x_f -. x) <=. x_rel *. x_factor +. x_abs
}
requires { abs x <=. x_factor }
requires { 0. <=. x_rel }
requires { 0. <=. x_abs }
requires { 0. <> to_real y_f }
requires { is_exact udiv x_f y_f }
requires { r = x_f ///. y_f }
ensures {
abs (to_real r -. (x /. (to_real y_f))) <=.
x_rel *. (x_factor /. abs (to_real y_f)) +. ((x_abs /. abs (to_real y_f)) +. eta)
}
=
let lemma y_f_pos ()
requires { 0. <. to_real y_f }
ensures {
abs (to_real r -. (x /. (to_real y_f))) <=.
x_rel *. (x_factor /. to_real y_f) +. ((x_abs /. to_real y_f) +. eta)
}
=
div_order_compat (to_real x_f) (x +. x_rel *. x_factor +. x_abs) (to_real y_f);
div_order_compat (x -. x_rel *. x_factor -. x_abs) (to_real x_f) (to_real y_f) in
let lemma y_f_neg ()
requires { to_real y_f <. 0. }
ensures {
abs (to_real r -. (x /. (to_real y_f))) <=.
x_rel *. (x_factor /. abs (to_real y_f)) +. ((x_abs /. abs (to_real y_f)) +. eta)
}
=
div_order_compat2 (to_real x_f) (x +. x_rel *. x_factor +. x_abs) (to_real y_f);
(* TODO: Prove this somehow *)
assert {
forall x y. x /. y <=. abs x /. abs y
};
assert {
(x -. x_rel *. x_factor -. x_abs) /. to_real y_f
<=. x /. (to_real y_f) +. ((x_rel *. x_factor) +. x_abs) /. abs (to_real y_f)
by
(-. x_rel *. x_factor -. x_abs) /. to_real y_f
<=. (x_rel *. x_factor +. x_abs) /. abs (to_real y_f)
};
div_order_compat2 (x -. x_rel *. x_factor -. x_abs) (to_real x_f) (to_real y_f);
in ()
end
|