File: ufloat.mlw

package info (click to toggle)
why3 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 45,020 kB
  • sloc: xml: 185,443; ml: 111,224; ansic: 3,998; sh: 2,578; makefile: 2,568; java: 865; python: 720; javascript: 290; lisp: 205; pascal: 173
file content (1086 lines) | stat: -rw-r--r-- 38,794 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
(** {1 Unbounded floating-point numbers}


See also {h <a href="https://inria.hal.science/hal-04343157">this report</a>}

*)

module UFloat
  use real.RealInfix
  use real.FromInt
  use real.Abs
  use ieee_float.RoundingMode

  type t

  val function uround mode real : t
  val function to_real t : real
  val function of_int int : t
  axiom to_real_of_int : forall x [of_int x]. to_real (of_int x) = from_int x

  val function uzero : t
  axiom uzero_spec : to_real uzero = 0.0

  val function uone : t
  axiom uone_spec : to_real uone = 1.0

  val function utwo : t
  axiom utwo_spec : to_real utwo = 2.0

  constant eps:real
  constant eta:real
  axiom eps_bounds : 0. <. eps <. 1.
  axiom eta_bounds : 0. <. eta <. 1.

  (* To avoid "inline_trivial" to break the forward_propagation strategy *)
  meta "inline:no" function eps
  meta "inline:no" function eta

  let function uadd (x y:t) : t
    (* TODO: Do we want the two first assertions in our context ?
      We only use them to prove the addition lemma *)
    ensures { abs (to_real result -. (to_real x +. to_real y)) <=. abs (to_real x) }
    ensures { abs (to_real result -. (to_real x +. to_real y)) <=. abs (to_real y) }
    ensures {
      abs (to_real result -. (to_real x +. to_real y))
      <=. abs (to_real x +. to_real y) *. eps
    }
  = uround RNE (to_real x +. to_real y)

  let function usub (x y:t) : t
    (* TODO: Do we want the two first assertions in our context ?
      We only use them to prove the addition lemma *)
    ensures { abs (to_real result -. (to_real x -. to_real y)) <=. abs (to_real x) }
    ensures { abs (to_real result -. (to_real x -. to_real y)) <=. abs (to_real y) }
    ensures {
      abs (to_real result -. (to_real x -. to_real y))
      <=. abs (to_real x -. to_real y) *. eps
    }
  = uround RNE (to_real x -. to_real y)

  let function umul (x y:t) : t
    ensures {
      abs (to_real result -. (to_real x *. to_real y))
        <=. abs (to_real x *. to_real y) *. eps +. eta
    }
  = uround RNE (to_real x *. to_real y)

  let function udiv (x y:t) : t
    requires { to_real y <> 0. }
    ensures {
      abs (to_real result -. (to_real x /. to_real y))
        <=. abs (to_real x /. to_real y) *. eps +. eta
    }
  = uround RNE (to_real x /. to_real y)

  let function uminus (x:t) : t
    ensures { to_real result = -. (to_real x) }
  = uround RNE (-. (to_real x))

  predicate is_exact (uop : t -> t -> t) (x y :t)

  (* Exact division but can still underflow, giving eta as error *)
  let function udiv_exact (x y:t) : t
    requires { to_real y <> 0. }
    requires { is_exact udiv x y }
    ensures { abs (to_real result -. (to_real x /. to_real y)) <=. eta }
  = uround RNE (to_real x /. to_real y)

  (** Infix operators *)
  let function ( ++. ) (x:t) (y:t) : t = uadd x y
  let function ( --. ) (x:t) (y:t) : t = usub x y
  let function ( **. ) (x:t) (y:t) : t = umul x y
  (* Why3 doesn't support abbreviations so we need to add the requires *)
  let function ( //. ) (x:t) (y:t) : t
    requires { to_real y <> 0. }
  = udiv x y
  let function ( --._ ) (x:t) : t = uminus x
  let function ( ///. ) (x:t) (y:t) : t
    requires { to_real y <> 0. }
    requires { is_exact udiv x y }
  = udiv_exact x y

  (* Some constants *)
  constant u0:t
  axiom to_real_u0 : to_real u0 = 0.0
  constant u1:t
  axiom to_real_u1 : to_real u1 = 1.0
  constant u2:t
  axiom to_real_u2 : to_real u2 = 2.0
  constant u4:t
  axiom to_real_u4 : to_real u4 = 4.0
  constant u8:t
  axiom to_real_u8 : to_real u8 = 8.0
  constant u16:t
  axiom to_real_u16 : to_real u16 = 16.0
  constant u32:t
  axiom to_real_u32 : to_real u32 = 32.0
  constant u64:t
  axiom to_real_u64 : to_real u64 = 64.0
  constant u128:t
  axiom to_real_u128 : to_real u128 = 128.0
  constant u256:t
  axiom to_real_u256 : to_real u256 = 256.0
  constant u512:t
  axiom to_real_u512 : to_real u512 = 512.0
  constant u1024:t
  axiom to_real_u1024 : to_real u1024 = 1024.0
  constant u2048:t
  axiom to_real_u2048 : to_real u2048 = 2048.0
  constant u4096:t
  axiom to_real_u4096 : to_real u4096 = 4096.0
  constant u8192:t
  axiom to_real_u8192 : to_real u8192 = 8192.0
  constant u16384:t
  axiom to_real_u16384 : to_real u16384 = 16384.0
  constant u32768:t
  axiom to_real_u32768 : to_real u32768 = 32768.0
  constant u65536:t
  axiom to_real_u65536 : to_real u65536 = 65536.0

  predicate is_positive_power_of_2 (x:t) =
    x = u1 \/ x = u2 || x = u4 || x = u8 || x = u16 || x = u32 || x = u64
    || x = u128 \/ x = u256 || x = u4096 || x = u8192 || x = u16384 || x = u32768
    || x = u65536

  axiom div_by_positive_power_of_2_is_exact :
    forall x y. is_positive_power_of_2 y -> is_exact udiv x y
end

(** {2 Single-precision unbounded floats} *)
module USingle
  use real.RealInfix

  type usingle

  constant eps:real = 0x1p-24 /. (1. +. 0x1p-24)
  constant eta:real = 0x1p-150

  clone export UFloat with
    type t = usingle,
    constant eps = eps,
    constant eta = eta,
    axiom.
end


(** {3 Double-precision unbounded floats} *)
module UDouble
  use real.RealInfix
  type udouble

  constant eps:real = 0x1p-53 /. (1. +. 0x1p-53)
  constant eta:real = 0x1p-1075

  clone export UFloat with
    type t = udouble,
    constant eps = eps,
    constant eta = eta,
    axiom.
end

(* Helper lemmas to help the proof of propagation lemmas *)
module HelperLemmas
  use real.RealInfix
  use real.Abs

  let ghost div_order_compat (x y z:real)
    requires { x <=. y }
    requires { 0. <. z }
    ensures { x /. z <=. y /. z }
    = ()

  let ghost div_order_compat2 (x y z:real)
    requires { x <=. y }
    requires { 0. >. z }
    ensures { y /. z <=. x /. z }
    = ()

  let ghost mult_err (x x_exact x_factor x_rel x_abs y:real)
    requires { 0. <=. x_rel }
    requires { 0. <=. x_abs }
    requires { abs x_exact <=. x_factor }
    requires { abs (x -. x_exact) <=. x_rel *. x_factor +. x_abs }
    ensures { abs (x *. y -. x_exact *. y) <=. x_rel *. abs (x_factor *. y) +. x_abs *. abs y }
  =
  assert {
    y >=. 0. ->
    abs (x *. y -. x_exact *. y) <=. abs (x_rel *. x_factor *. y) +. x_abs *. abs y
    by
      (x_exact -. x_rel *. x_factor -. x_abs) *. y <=. x *. y <=. (x_exact +. x_rel *. x_factor +. x_abs) *. y
  };
  assert {
    y <. 0. ->
    abs (x *. y -. x_exact *. y) <=. abs (x_rel *. x_factor *. y) +. x_abs *. abs y
    by
      (x_exact +. x_rel *. x_factor +. x_abs) *. y <=. x *. y <=. (x_exact -. x_rel *. x_factor -. x_abs) *. y
  }

  let ghost mult_err_combine (x x_exact x_factor x_rel x_abs y exact_y y_factor y_rel y_abs:real)
    requires { 0. <=. x_rel }
    requires { 0. <=. y_rel }
    requires { 0. <=. x_abs }
    requires { 0. <=. y_abs }
    requires { abs x_exact <=. x_factor }
    requires { abs exact_y <=. y_factor }
    requires { abs (x -. x_exact) <=. x_rel *. x_factor +. x_abs }
    requires { abs (y -. exact_y) <=. y_rel *. y_factor +. y_abs }
    ensures {
      abs (x *. y -. x_exact *. exact_y)
      <=. (x_rel +. y_rel +. x_rel *. y_rel) *. (x_factor *. y_factor)
        +. (y_abs +. y_abs *. x_rel) *. x_factor
        +. (x_abs +. x_abs *. y_rel) *. y_factor
        +. x_abs *. y_abs
    }
  =
  mult_err x x_exact x_factor x_rel x_abs y;
  mult_err y exact_y y_factor y_rel y_abs x_exact;
  mult_err y exact_y y_factor y_rel y_abs x_factor;
  assert {
    abs (x *. y -. x_exact *. exact_y) <=. (y_rel *. x_factor *. y_factor) +. (y_abs *. x_factor) +. (x_rel *. abs (x_factor *. y)) +. x_abs *. abs y
  };
  assert {
    abs (x *. y -. x_exact *. exact_y) <=. (y_rel *. x_factor *. y_factor) +. (x_rel *. (x_factor *. y_factor *. (1. +. y_rel) +. x_factor *. y_abs)) +. y_abs *. x_factor +. x_abs *. abs y
    by
      abs (x_factor *. y) <=. x_factor *. y_factor *. (1. +. y_rel) +. x_factor *. y_abs
  };
  assert {
    x_abs *. abs y <=. x_abs *. (y_factor *. (1. +. y_rel) +. y_abs)
  }

  use real.ExpLog

  let ghost exp_approx_err (x x_approx x_factor a b :real)
    requires { abs (x_approx -. x) <=. x_factor *. a +. b }
    requires { x <=. x_factor }
    ensures {
      abs (exp(x_approx) -. exp(x)) <=. exp(x) *. (exp(a *. x_factor +. b) -. 1.)
    }
  =
  assert {
    exp(x_approx) <=. exp(x) +. exp(x) *. (exp(a *. x_factor +. b) -. 1.)
    by
      exp (x_approx) <=. exp(x) *. exp (a *. x_factor +. b)
  };
  assert {
    exp(x_approx) >=. exp(x) -. exp(x) *. (exp(a *. x_factor +. b) -. 1.)
    by
      exp (x_approx) >=. exp(x) *. exp (-. a *. x_factor -. b)
    so
      exp(x_approx) -. exp(x) >=. exp(x) *. (exp (-. a *. x_factor -. b) -. 1.)
    so
      exp(a *. x_factor +. b) +. exp(-.a *. x_factor -. b) >=. 2.
    so
      -. exp(a *. x_factor +. b) +. 1. <=. exp(-.a *. x_factor -. b) -. 1.
    so
      exp(x) *. ((-. exp(a *. x_factor +. b)) +. 1.) <=. exp(x) *. (exp(-. a *. x_factor -. b) -. 1.)
    so
      -. exp(x) *. (exp(a *. x_factor +. b) -. 1.) <=. exp(x) *. (exp(-. a *. x_factor -. b) -. 1.)
  }

  let lemma log_1_minus_x (x:real)
    requires { 0. <=. abs x <. 1. }
    ensures { log (1. +. x) <=. -. log (1. -. x) }
  =
    assert { 1. +. x <=. 1. /. (1. -. x) };
    assert { forall x y z. 0. <=. x -> 0. <. y -> 0. <=. z -> x *. y <=. z -> x <=. z /. y };
    assert { exp (-.log (1. -. x)) = 1. /. (1. -. x) }

  let lemma log2_1_minus_x (x:real)
    requires { 0. <=. abs x <. 1. }
    ensures { log2 (1. +. x) <=. -. log2 (1. -. x) }
  =
  div_order_compat (log (1. +. x)) (-. log (1. -. x)) (log 2.);
  log_1_minus_x x

  let lemma log10_1_minus_x (x:real)
    requires { 0. <=. abs x <. 1. }
    ensures { log10 (1. +. x) <=. -. log10 (1. -. x) }
  =
  div_order_compat (log (1. +. x)) (-. log (1. -. x)) (log 10.);
  log_1_minus_x x

  let ghost log_approx_err (x x_approx x_factor a b :real)
    requires { abs (x_approx -. x) <=. x_factor *. a +. b }
    requires { 0. <. (x -. a *. x_factor -. b) }
    requires { 0. <. x <=. x_factor }
    ensures {
      abs (log x_approx -. log x) <=. -. log(1. -. ((a *. x_factor +. b) /. x))
    }
  =
    assert { a *. x_factor +. b  = x *. ((a *. x_factor +. b) /. x) };
    assert {
      log (x *. (1. -. (a *. x_factor +. b) /. x))
      <=. log x_approx
      <=. log (x *. (1. +. (a *. x_factor +. b) /.x))
      by
        0. <.  (x -. (a *. x_factor +. b)) <=. x_approx
    };
    log_1_minus_x ((a *. x_factor +. b) /. x)

  let ghost log2_approx_err (x x_approx x_factor a b :real)
    requires { abs (x_approx -. x) <=. x_factor *. a +. b }
    requires { 0. <. (x -. a *. x_factor -. b) }
    requires { 0. <. x <=. x_factor }
    ensures {
      abs (log2 x_approx -. log2 x) <=. -. log2(1. -. ((a *. x_factor +. b) /. x))
    }
  =
    assert { a *. x_factor +. b  = x *. ((a *. x_factor +. b) /. x) };
    assert {
      log2 (x *. (1. -. (a *. x_factor +. b) /. x))
      <=. log2 x_approx
      <=. log2 (x *. (1. +. (a *. x_factor +. b) /.x))
      by
        0. <.  (x -. (a *. x_factor +. b)) <=. x_approx
    };
    log2_1_minus_x ((a *. x_factor +. b) /. x)

  let ghost log10_approx_err (x x_approx x_factor a b :real)
    requires { abs (x_approx -. x) <=. x_factor *. a +. b }
    requires { 0. <. (x -. a *. x_factor -. b) }
    requires { 0. <. x <=. x_factor }
    ensures {
      abs (log10 x_approx -. log10 x) <=. -. log10(1. -. ((a *. x_factor +. b) /. x))
    }
  =
    assert { a *. x_factor +. b  = x *. ((a *. x_factor +. b) /. x) };
    assert {
      log10 (x *. (1. -. (a *. x_factor +. b) /. x))
      <=. log10 x_approx
      <=. log10 (x *. (1. +. (a *. x_factor +. b) /.x))
      by
        0. <.  (x -. (a *. x_factor +. b)) <=. x_approx
    };
    log10_1_minus_x ((a *. x_factor +. b) /. x)

  use real.Trigonometry

  lemma sin_of_approx : forall x y. abs (sin x -. sin y) <=. abs (x -. y)
  lemma cos_of_approx : forall x y. abs (cos x -. cos y) <=. abs (x -. y)

  use real.Sum
  use int.Int
  use real.FromInt

  let rec ghost sum_approx_err (fi_rel fi_abs:real) (f f_exact f_factor : int -> real) (a b:int)
    requires { a <= b }
    requires { forall i. a <= i < b -> abs (f i -. f_exact i) <=. f_factor i *. fi_rel +. fi_abs }
    variant { b - a }
    ensures { abs (sum f a b -. sum f_exact a b) <=. fi_rel *. sum f_factor a b +. fi_abs *. from_int (b-a) }
  =
  if (a < b) then
    begin
      sum_approx_err fi_rel fi_abs f f_exact f_factor a (b - 1)
    end

end

(** {4 Single propagation lemmas} *)
module USingleLemmas
  use real.RealInfix
  use real.FromInt
  use real.Abs
  use USingle

  let lemma uadd_single_error_propagation (x_f y_f r: usingle) (x x_factor x_rel x_abs y y_factor y_rel y_abs : real)
    requires {
      abs (to_real x_f -. x) <=. x_rel *. x_factor +. x_abs
    }
    requires {
      abs (to_real y_f -. y) <=. y_rel *. y_factor +. y_abs
    }
    requires { abs x <=. x_factor }
    requires { abs y <=. y_factor }
    (* TODO: Use (0 <=. x_rel \/ (x_factor = 0 /\ x_abs = 0)), same for y. *)
    requires { 0. <=. x_rel }
    requires { 0. <=. y_rel }
    requires { 0. <=. x_abs }
    requires { 0. <=. y_abs }
    requires { r = (x_f ++. y_f) }
    ensures {
      abs (to_real r -. (x +. y)) <=.
      (x_rel +. y_rel +. eps) *. (x_factor +. y_factor)
          +. ((1. +. eps +. y_rel) *. x_abs +. (1. +. eps +. x_rel) *. y_abs)
    }
  =
  let ghost delta = abs (to_real (x_f ++. y_f) -. (to_real x_f +. to_real y_f)) in
  assert {
    0. <=. x_rel /\ 0. <=. y_rel ->
    delta <=.
      (eps +. y_rel) *. x_factor +. (eps +. x_rel) *. y_factor
      +. (x_rel +. eps) *. y_abs +. (y_rel +. eps) *. x_abs
    by
      (delta <=. x_factor *. x_rel +. x_abs +. x_factor
      so
        x_factor +. x_abs <=. eps *. (y_factor +. y_abs) ->
        delta <=. (eps +. x_rel) *. y_factor
        +. (eps +. y_rel) *. x_factor
        +. (y_rel +. eps) *. x_abs +. (x_rel +. eps) *. y_abs
      by
        delta <=. eps *. (y_factor +. y_abs) *. x_rel
              +. (eps *. (y_factor +. y_abs)))
      /\
      (delta <=. y_factor *. y_rel +. y_abs +. y_factor
      so
      abs y_factor +. y_abs <=. eps *. (x_factor +. x_abs) ->
      delta <=. (eps +. y_rel) *. x_factor
        +. (eps +. x_rel) *. y_factor
        +. (x_rel +. eps) *. y_abs +. (y_rel +. eps) *. x_abs
      by
        delta <=. eps *. (x_factor +. x_abs) *. y_rel
              +. (eps *. (x_factor +. x_abs)))
      /\
      (
       (eps *. (x_factor +. x_abs) <. abs y_factor +. y_abs /\
       eps *. (y_factor +. y_abs) <. abs x_factor +. x_abs) ->
       (delta <=.
       (eps +. y_rel) *. x_factor +. (eps +. x_rel) *. y_factor
      +. (x_rel +. eps) *. y_abs +. (y_rel +. eps) *. x_abs
      by
        abs (to_real x_f +. to_real y_f) <=.
        abs (to_real x_f -. x) +. x_factor +. (abs (to_real y_f -. y) +. y_factor)
      so
        x_factor *. x_rel <=. (y_factor +. y_abs) /. eps *. x_rel /\
        y_factor *. y_rel <=. (x_factor +. x_abs) /. eps *. y_rel))
  }

  let lemma usub_single_error_propagation (x_f y_f r : usingle) (x x_factor x_rel x_abs y y_factor y_rel y_abs : real)
    requires {
      abs (to_real x_f -. x) <=. x_rel *. x_factor +. x_abs
    }
    requires {
      abs (to_real y_f -. y) <=. y_rel *. y_factor +. y_abs
    }
    requires { abs x <=. x_factor }
    requires { abs y <=. y_factor }
    requires { 0. <=. x_abs }
    requires { 0. <=. y_abs }
    requires { 0. <=. x_rel }
    requires { 0. <=. y_rel }
    requires { r = x_f --. y_f }
    ensures {
      abs (to_real r -. (x -. y))
      <=. (x_rel +. y_rel +. eps) *. (x_factor +. y_factor)
          +. ((1. +. eps +. y_rel) *. x_abs +. (1. +. eps +. x_rel) *. y_abs)
    }
  = uadd_single_error_propagation x_f (--. y_f) r x x_factor x_rel x_abs (-. y) y_factor y_rel y_abs

  use HelperLemmas

  let lemma umul_single_error_propagation (x_f y_f r : usingle) (x x_factor x_rel x_abs y y_factor y_rel y_abs : real)
    requires {
      abs (to_real x_f -. x) <=. x_rel *. x_factor +. x_abs
    }
    requires {
      abs (to_real y_f -. y) <=. y_rel *. y_factor +. y_abs
    }
    requires { abs x <=. x_factor }
    requires { abs y <=. y_factor }
    requires { 0. <=. x_rel }
    requires { 0. <=. y_rel }
    requires { 0. <=. x_abs }
    requires { 0. <=. y_abs }
    requires { r = x_f **. y_f }
    ensures {
      abs (to_real r -. (x *. y)) <=.
        (eps +. (x_rel +. y_rel +. x_rel *. y_rel) *. (1. +. eps)) *. (x_factor *. y_factor)
        +. (((y_abs +. y_abs *. x_rel) *. x_factor
        +. (x_abs +. x_abs *. y_rel) *. y_factor
        +. x_abs *. y_abs) *. (1. +. eps) +. eta)
    }
  =
  assert {
    to_real x_f *. to_real y_f -. abs (to_real x_f *. to_real y_f) *. eps -. eta
    <=. to_real (x_f **. y_f)
    <=. to_real x_f *. to_real y_f +. abs (to_real x_f *. to_real y_f) *. eps +. eta
  };
    assert { abs (x *. y) <=. x_factor *. y_factor by
       abs x *. abs y <=. x_factor *. abs y = abs y *. x_factor <=. y_factor *. x_factor };
  mult_err_combine (to_real x_f) x x_factor x_rel x_abs (to_real y_f) y y_factor y_rel y_abs

  use real.ExpLog

  let lemma log_single_error_propagation (logx_f x_f : usingle)
        (x_exact x_factor log_rel log_abs x_rel x_abs : real)
    requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs }
    requires {
      abs (to_real logx_f -. log(to_real x_f))
       <=. log_rel *. abs (log (to_real x_f)) +. log_abs
    }
    requires { 0. <. x_exact <=. x_factor }
    requires { 0. <. (x_exact -. x_rel *. x_factor -. x_abs) }
    requires { 0. <=. log_rel }
    ensures {
      abs (to_real logx_f -. log (x_exact))
        <=. log_rel *. abs (log (x_exact)) +.
          (-. log (1. -. ((x_rel *. x_factor +. x_abs) /. x_exact)) *. (1. +. log_rel)
          +. log_abs)
    }
  =
  log_approx_err x_exact (to_real x_f) x_factor x_rel x_abs;
  assert {
   abs (log (to_real x_f)) *. log_rel
    <=. (abs (log (x_exact)) -. log (1.0 -. (((x_rel *. x_factor) +. x_abs) /. x_exact))) *. log_rel
  }

  let lemma log2_single_error_propagation (log2x_f x_f : usingle)
        (x_exact x_factor log_rel log_abs x_rel x_abs : real)
    requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs }
    requires {
      abs (to_real log2x_f -. log2(to_real x_f))
       <=. log_rel *. abs (log2 (to_real x_f)) +. log_abs
    }
    requires { 0. <. x_exact <=. x_factor }
    requires { 0. <. (x_exact -. x_rel *. x_factor -. x_abs) }
    requires { 0. <=. log_rel }
    ensures {
      abs (to_real log2x_f -. log2 (x_exact))
        <=. log_rel *. abs (log2 (x_exact)) +.
          (-. log2 (1. -. ((x_rel *. x_factor +. x_abs) /. x_exact)) *. (1. +. log_rel)
          +. log_abs)
    }
  =
  log2_approx_err x_exact (to_real x_f) x_factor x_rel x_abs;
  assert {
   abs (log2 (to_real x_f)) *. log_rel
    <=. (abs (log2 (x_exact)) -. log2 (1.0 -. (((x_rel *. x_factor) +. x_abs) /. x_exact))) *. log_rel
  }

  let lemma log10_single_error_propagation (log10x_f x_f : usingle)
        (x_exact x_factor log_rel log_abs x_rel x_abs : real)
    requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs }
    requires {
      abs (to_real log10x_f -. log10(to_real x_f))
       <=. log_rel *. abs (log10 (to_real x_f)) +. log_abs
    }
    requires { 0. <. x_exact <=. x_factor }
    requires { 0. <. (x_exact -. x_rel *. x_factor -. x_abs) }
    requires { 0. <=. log_rel }
    ensures {
      abs (to_real log10x_f -. log10 (x_exact))
        <=. log_rel *. abs (log10 (x_exact)) +.
          (-. log10 (1. -. ((x_rel *. x_factor +. x_abs) /. x_exact)) *. (1. +. log_rel)
          +. log_abs)
    }
  =
  log10_approx_err x_exact (to_real x_f) x_factor x_rel x_abs;
  assert {
   abs (log10 (to_real x_f)) *. log_rel
    <=. (abs (log10 (x_exact)) -. log10 (1.0 -. (((x_rel *. x_factor) +. x_abs) /. x_exact))) *. log_rel
  }

  let lemma exp_single_error_propagation (expx_f x_f : usingle)
        (x_exact x_factor exp_rel exp_abs x_rel x_abs : real)
    requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs }
    requires {
      abs (to_real expx_f -. exp(to_real x_f))
        <=. exp_rel *. exp (to_real x_f) +. exp_abs
    }
    requires { x_exact <=. x_factor }
    requires { 0. <=. exp_rel <=. 1. }
    ensures {
      abs (to_real expx_f -. exp (x_exact))
      <=. (exp_rel +. (exp(x_rel *. x_factor +. x_abs) -. 1.) *. (1. +. exp_rel)) *. exp(x_exact)
        +. exp_abs
    }
  =
    exp_approx_err x_exact (to_real x_f) x_factor x_rel x_abs;
    assert {
      exp x_exact *. (1. -. exp_rel) -.
      exp x_exact *. (exp (x_rel *. x_factor +. x_abs) -. 1.) *. (1. -. exp_rel)
      -. exp_abs
      <=. to_real expx_f
      by
        (exp x_exact -. exp x_exact *. (exp (x_rel *. x_factor +. x_abs) -. 1.))
         *. (1. -. exp_rel) -. exp_abs
        <=. exp (to_real x_f) *. (1. -. exp_rel) -. exp_abs
        <=. to_real expx_f
    };
    assert {
      to_real expx_f <=. (exp(x_exact) +. exp(x_exact)*.(exp(x_rel *. x_factor +. x_abs) -. 1.))*. (1. +. exp_rel) +. exp_abs
      by
        to_real expx_f <=. exp(to_real x_f) *. (1. +. exp_rel) +. exp_abs
    };


  use real.Trigonometry

  let lemma sin_single_error_propagation (sinx_f x_f : usingle)
        (x_exact x_factor sin_rel sin_abs x_rel x_abs : real)
    requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs }
    requires {
      abs (to_real sinx_f -. sin(to_real x_f))
        <=. sin_rel *. abs (sin (to_real x_f)) +. sin_abs
    }
    requires { x_exact <=. x_factor }
    requires { 0. <=. sin_rel }
    ensures {
      abs (to_real sinx_f -. sin (x_exact))
      <=. sin_rel *. abs(sin(x_exact))
          +. (((x_rel *. x_factor +. x_abs) *. (1. +. sin_rel)) +. sin_abs)
    }
  =
  assert {
  abs (sin (to_real x_f)) *. sin_rel
  <=. (abs (sin x_exact) +. (x_rel *. x_factor +. x_abs)) *. sin_rel
  }

  let lemma cos_single_error_propagation (cosx_f x_f : usingle)
        (x_exact x_factor cos_rel cos_abs x_rel x_abs : real)
    requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs }
    requires {
      abs (to_real cosx_f -. cos(to_real x_f))
        <=. cos_rel *. abs (cos (to_real x_f)) +. cos_abs
    }
    requires { x_exact <=. x_factor }
    requires { 0. <=. cos_rel }
    ensures {
      abs (to_real cosx_f -. cos (x_exact))
      <=. cos_rel *. abs(cos(x_exact))
          +. (((x_rel *. x_factor +. x_abs) *. (1. +. cos_rel)) +. cos_abs)
    }
  =
  assert {
  abs (cos (to_real x_f)) *. cos_rel
  <=. (abs (cos x_exact) +. (x_rel *. x_factor +. x_abs)) *. cos_rel
  }

  use real.Sum
  use int.Int
  use real.FromInt

  function real_fun (f:int -> usingle) : int -> real = fun i -> to_real (f i)

  let lemma sum_single_error_propagation (x : usingle)
                (f : int -> usingle) (f_exact f_factor f_factor' : int -> real) (n:int)
                (sum_rel sum_abs f_rel f_abs : real)
    requires {
      forall i. 0 <= i < n ->
        abs ((real_fun f) i -. f_exact i) <=. f_rel *. f_factor i +. f_abs
    }
    requires {
      forall i. 0 <= i < n ->
      f_factor i -. f_rel *. f_factor i -. f_abs <=. f_factor' i <=. f_factor i +. f_rel *. f_factor i +. f_abs
    }
    requires {
      abs (to_real x -. (sum (real_fun f) 0 n))
        <=. sum_rel *. (sum f_factor' 0 n) +. sum_abs
    }
    requires { 0. <=. sum_rel }
    requires { 0 <= n }
    ensures {
      abs (to_real x -. sum f_exact 0 n)
      <=. (f_rel +. (sum_rel *. (1. +. f_rel))) *. sum f_factor 0 n +.
        ((f_abs *. from_int n *.(1. +. sum_rel)) +. sum_abs)
    }
  =
  sum_approx_err f_rel f_abs (real_fun f) f_exact f_factor 0 n;
  sum_approx_err f_rel f_abs f_factor' f_factor f_factor 0 n;
  assert {
    sum_rel *. sum f_factor' 0 n <=.
    sum_rel *. (sum f_factor 0 n +. ((f_rel *. sum f_factor 0 n) +. (f_abs *. from_int n)))
  }

  (* We don't have an error on y_f because in practice we won't have an exact division with an approximate divisor *)
  let lemma udiv_exact_single_error_propagation (x_f y_f r: usingle) (x x_factor x_rel x_abs : real)
    requires {
      abs (to_real x_f -. x) <=. x_rel *. x_factor +. x_abs
    }
    requires { abs x <=. x_factor }
    requires { 0. <=. x_rel }
    requires { 0. <=. x_abs }
    requires { 0. <> to_real y_f }
    requires { is_exact udiv x_f y_f }
    requires { r = x_f ///. y_f }
    ensures {
      abs (to_real r -. (x /. (to_real y_f))) <=.
        x_rel *. (x_factor /. abs (to_real y_f)) +. ((x_abs /. abs (to_real y_f)) +. eta)
    }
  =
  let lemma y_f_pos ()
    requires { 0. <. to_real y_f }
    ensures {
      abs (to_real r -. (x /. (to_real y_f))) <=.
        x_rel *. (x_factor /. to_real y_f) +. ((x_abs /. to_real y_f) +. eta)
    }
    =
    div_order_compat (to_real x_f) (x +. x_rel *. x_factor +. x_abs) (to_real y_f);
    div_order_compat (x -. x_rel *. x_factor -. x_abs) (to_real x_f) (to_real y_f) in
  let lemma y_f_neg ()
    requires { to_real y_f <. 0. }
    ensures {
      abs (to_real r -. (x /. (to_real y_f))) <=.
        x_rel *. (x_factor /. abs (to_real y_f)) +. ((x_abs /. abs (to_real y_f)) +. eta)
    }
    =
    div_order_compat2 (to_real x_f) (x +. x_rel *. x_factor +. x_abs) (to_real y_f);
    (* TODO: Prove this somehow *)
    assert {
      forall x y. y <> 0.0 -> x /. y <=. abs x /. abs y
      by abs (x /. y) = abs (x *. inv y) = abs x *. abs (inv y) = abs x *. inv (abs y) = abs x /. abs y
    };
    assert {
      (x -. x_rel *. x_factor -. x_abs) /. to_real y_f
      <=. x /. (to_real y_f) +. ((x_rel *. x_factor) +. x_abs) /. abs (to_real y_f)
      by
        (-. x_rel *. x_factor -. x_abs) /. to_real y_f
        <=. (x_rel *. x_factor +. x_abs) /. abs (to_real y_f)
    };
    div_order_compat2 (x -. x_rel *. x_factor -. x_abs) (to_real x_f) (to_real y_f);
  in ()
end

(** {5 Double propagation lemmas} *)
module UDoubleLemmas
  use real.RealInfix
  use real.FromInt
  use real.Abs
  use UDouble

  let lemma uadd_double_error_propagation (x_f y_f r : udouble) (x x_factor x_rel x_abs y y_factor y_rel y_abs : real)
    requires {
      abs (to_real x_f -. x) <=. x_rel *. x_factor +. x_abs
    }
    requires {
      abs (to_real y_f -. y) <=. y_rel *. y_factor +. y_abs
    }
    requires { abs x <=. x_factor }
    requires { abs y <=. y_factor }
    (* TODO: Use (0 <=. x_rel \/ (x_factor = 0 /\ x_abs = 0)), same for y. *)
    requires { 0. <=. x_rel }
    requires { 0. <=. y_rel }
    requires { 0. <=. x_abs }
    requires { 0. <=. y_abs }
    requires { r = x_f ++. y_f }
    ensures {
      abs (to_real r -. (x +. y)) <=.
      (x_rel +. y_rel +. eps) *. (x_factor +. y_factor)
          +. ((1. +. eps +. y_rel) *. x_abs +. (1. +. eps +. x_rel) *. y_abs)
    }
  =
  let ghost delta = abs (to_real (x_f ++. y_f) -. (to_real x_f +. to_real y_f)) in
  assert {
    0. <=. x_rel /\ 0. <=. y_rel ->
    delta <=.
      (eps +. y_rel) *. x_factor +. (eps +. x_rel) *. y_factor
      +. (x_rel +. eps) *. y_abs +. (y_rel +. eps) *. x_abs
    by
      (delta <=. x_factor *. x_rel +. x_abs +. x_factor
      so
        x_factor +. x_abs <=. eps *. (y_factor +. y_abs) ->
        delta <=. (eps +. x_rel) *. y_factor
        +. (eps +. y_rel) *. x_factor
        +. (y_rel +. eps) *. x_abs +. (x_rel +. eps) *. y_abs
      by
        delta <=. eps *. (y_factor +. y_abs) *. x_rel
              +. (eps *. (y_factor +. y_abs)))
      /\
      (delta <=. y_factor *. y_rel +. y_abs +. y_factor
      so
      abs y_factor +. y_abs <=. eps *. (x_factor +. x_abs) ->
      delta <=. (eps +. y_rel) *. x_factor
        +. (eps +. x_rel) *. y_factor
        +. (x_rel +. eps) *. y_abs +. (y_rel +. eps) *. x_abs
      by
        delta <=. eps *. (x_factor +. x_abs) *. y_rel
              +. (eps *. (x_factor +. x_abs)))
      /\
      (
       (eps *. (x_factor +. x_abs) <. abs y_factor +. y_abs /\
       eps *. (y_factor +. y_abs) <. abs x_factor +. x_abs) ->
       (delta <=.
       (eps +. y_rel) *. x_factor +. (eps +. x_rel) *. y_factor
      +. (x_rel +. eps) *. y_abs +. (y_rel +. eps) *. x_abs
      by
        abs (to_real x_f +. to_real y_f) <=.
        abs (to_real x_f -. x) +. x_factor +. (abs (to_real y_f -. y) +. y_factor)
      so
        x_factor *. x_rel <=. (y_factor +. y_abs) /. eps *. x_rel /\
        y_factor *. y_rel <=. (x_factor +. x_abs) /. eps *. y_rel))
  }

  let lemma usub_double_error_propagation (x_f y_f r : udouble) (x x_factor x_rel x_abs y y_factor y_rel y_abs : real)
    requires {
      abs (to_real x_f -. x) <=. x_rel *. x_factor +. x_abs
    }
    requires {
      abs (to_real y_f -. y) <=. y_rel *. y_factor +. y_abs
    }
    requires { abs x <=. x_factor }
    requires { abs y <=. y_factor }
    requires { 0. <=. x_abs }
    requires { 0. <=. y_abs }
    requires { 0. <=. x_rel }
    requires { 0. <=. y_rel }
    requires { r = x_f --. y_f }
    ensures {
      abs (to_real r -. (x -. y))
      <=. (x_rel +. y_rel +. eps) *. (x_factor +. y_factor)
          +. ((1. +. eps +. y_rel) *. x_abs +. (1. +. eps +. x_rel) *. y_abs)
    }
  = uadd_double_error_propagation x_f (--. y_f) r x x_factor x_rel x_abs (-. y) y_factor y_rel y_abs

  use HelperLemmas

  let lemma umul_double_error_propagation (x_f y_f r : udouble) (x x_factor x_rel x_abs y y_factor y_rel y_abs : real)
    requires {
      abs (to_real x_f -. x) <=. x_rel *. x_factor +. x_abs
    }
    requires {
      abs (to_real y_f -. y) <=. y_rel *. y_factor +. y_abs
    }
    requires { abs x <=. x_factor }
    requires { abs y <=. y_factor }
    requires { 0. <=. x_rel }
    requires { 0. <=. y_rel }
    requires { 0. <=. x_abs }
    requires { 0. <=. y_abs }
    requires { r = x_f **. y_f }
    ensures {
      abs (to_real r -. (x *. y)) <=.
        (eps +. (x_rel +. y_rel +. x_rel *. y_rel) *. (1. +. eps)) *. (x_factor *. y_factor)
        +. (((y_abs +. y_abs *. x_rel) *. x_factor
        +. (x_abs +. x_abs *. y_rel) *. y_factor
        +. x_abs *. y_abs) *. (1. +. eps) +. eta)
    }
  =
  assert {
    to_real x_f *. to_real y_f -. abs (to_real x_f *. to_real y_f) *. eps -. eta
    <=. to_real (x_f **. y_f)
    <=. to_real x_f *. to_real y_f +. abs (to_real x_f *. to_real y_f) *. eps +. eta
  };
    assert { abs (x *. y) <=. x_factor *. y_factor by
       abs x *. abs y <=. x_factor *. abs y = abs y *. x_factor <=. y_factor *. x_factor };
  mult_err_combine (to_real x_f) x x_factor x_rel x_abs (to_real y_f) y y_factor y_rel y_abs

  use real.ExpLog

  let lemma log_double_error_propagation (logx_f x_f : udouble)
        (x_exact x_factor log_rel log_abs x_rel x_abs : real)
    requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs }
    requires {
      abs (to_real logx_f -. log(to_real x_f))
       <=. log_rel *. abs (log (to_real x_f)) +. log_abs
    }
    requires { 0. <. x_exact <=. x_factor }
    requires { 0. <. (x_exact -. x_rel *. x_factor -. x_abs) }
    requires { 0. <=. log_rel }
    ensures {
      abs (to_real logx_f -. log (x_exact))
        <=. log_rel *. abs (log (x_exact)) +.
          (-. log (1. -. ((x_rel *. x_factor +. x_abs) /. x_exact)) *. (1. +. log_rel)
          +. log_abs)
    }
  =
  log_approx_err x_exact (to_real x_f) x_factor x_rel x_abs;
  assert {
   abs (log (to_real x_f)) *. log_rel
    <=. (abs (log (x_exact)) -. log (1.0 -. (((x_rel *. x_factor) +. x_abs) /. x_exact))) *. log_rel
  }

  let lemma log2_double_error_propagation (log2x_f x_f : udouble)
        (x_exact x_factor log_rel log_abs x_rel x_abs : real)
    requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs }
    requires {
      abs (to_real log2x_f -. log2(to_real x_f))
       <=. log_rel *. abs (log2 (to_real x_f)) +. log_abs
    }
    requires { 0. <. x_exact <=. x_factor }
    requires { 0. <. (x_exact -. x_rel *. x_factor -. x_abs) }
    requires { 0. <=. log_rel }
    ensures {
      abs (to_real log2x_f -. log2 (x_exact))
        <=. log_rel *. abs (log2 (x_exact)) +.
          (-. log2 (1. -. ((x_rel *. x_factor +. x_abs) /. x_exact)) *. (1. +. log_rel)
          +. log_abs)
    }
  =
  log2_approx_err x_exact (to_real x_f) x_factor x_rel x_abs;
  assert {
   abs (log2 (to_real x_f)) *. log_rel
    <=. (abs (log2 (x_exact)) -. log2 (1.0 -. (((x_rel *. x_factor) +. x_abs) /. x_exact))) *. log_rel
  }

  let lemma log10_double_error_propagation (log10x_f x_f : udouble)
        (x_exact x_factor log_rel log_abs x_rel x_abs : real)
    requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs }
    requires {
      abs (to_real log10x_f -. log10(to_real x_f))
       <=. log_rel *. abs (log10 (to_real x_f)) +. log_abs
    }
    requires { 0. <. x_exact <=. x_factor }
    requires { 0. <. (x_exact -. x_rel *. x_factor -. x_abs) }
    requires { 0. <=. log_rel }
    ensures {
      abs (to_real log10x_f -. log10 (x_exact))
        <=. log_rel *. abs (log10 (x_exact)) +.
          (-. log10 (1. -. ((x_rel *. x_factor +. x_abs) /. x_exact)) *. (1. +. log_rel)
          +. log_abs)
    }
  =
  log10_approx_err x_exact (to_real x_f) x_factor x_rel x_abs;
  assert {
   abs (log10 (to_real x_f)) *. log_rel
    <=. (abs (log10 (x_exact)) -. log10 (1.0 -. (((x_rel *. x_factor) +. x_abs) /. x_exact))) *. log_rel
  }

  let lemma exp_double_error_propagation (expx_f x_f : udouble)
        (x_exact x_factor exp_rel exp_abs x_rel x_abs : real)
    requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs }
    requires {
      abs (to_real expx_f -. exp(to_real x_f))
        <=. exp_rel *. exp (to_real x_f) +. exp_abs
    }
    requires { x_exact <=. x_factor }
    requires { 0. <=. exp_rel <=. 1. }
    ensures {
      abs (to_real expx_f -. exp (x_exact))
      <=. (exp_rel +. (exp(x_rel *. x_factor +. x_abs) -. 1.) *. (1. +. exp_rel)) *. exp(x_exact)
        +. exp_abs
    }
  =
    exp_approx_err x_exact (to_real x_f) x_factor x_rel x_abs;
    assert {
      exp x_exact *. (1. -. exp_rel) -.
      exp x_exact *. (exp (x_rel *. x_factor +. x_abs) -. 1.) *. (1. -. exp_rel)
      -. exp_abs
      <=. to_real expx_f
      by
        (exp x_exact -. exp x_exact *. (exp (x_rel *. x_factor +. x_abs) -. 1.))
         *. (1. -. exp_rel) -. exp_abs
        <=. exp (to_real x_f) *. (1. -. exp_rel) -. exp_abs
        <=. to_real expx_f
    };
    assert {
      to_real expx_f <=. (exp(x_exact) +. exp(x_exact)*.(exp(x_rel *. x_factor +. x_abs) -. 1.))*. (1. +. exp_rel) +. exp_abs
      by
        to_real expx_f <=. exp(to_real x_f) *. (1. +. exp_rel) +. exp_abs
    };


  use real.Trigonometry

  let lemma sin_double_error_propagation (sinx_f x_f : udouble)
        (x_exact x_factor sin_rel sin_abs x_rel x_abs : real)
    requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs }
    requires {
      abs (to_real sinx_f -. sin(to_real x_f))
        <=. sin_rel *. abs (sin (to_real x_f)) +. sin_abs
    }
    requires { x_exact <=. x_factor }
    requires { 0. <=. sin_rel }
    ensures {
      abs (to_real sinx_f -. sin (x_exact))
      <=. sin_rel *. abs(sin(x_exact))
          +. (((x_rel *. x_factor +. x_abs) *. (1. +. sin_rel)) +. sin_abs)
    }
  =
  assert {
  abs (sin (to_real x_f)) *. sin_rel
  <=. (abs (sin x_exact) +. (x_rel *. x_factor +. x_abs)) *. sin_rel
  }

  let lemma cos_double_error_propagation (cosx_f x_f : udouble)
        (x_exact x_factor cos_rel cos_abs x_rel x_abs : real)
    requires { abs (to_real x_f -. x_exact) <=. x_rel *. x_factor +. x_abs }
    requires {
      abs (to_real cosx_f -. cos(to_real x_f))
        <=. cos_rel *. abs (cos (to_real x_f)) +. cos_abs
    }
    requires { x_exact <=. x_factor }
    requires { 0. <=. cos_rel }
    ensures {
      abs (to_real cosx_f -. cos (x_exact))
      <=. cos_rel *. abs(cos(x_exact))
          +. (((x_rel *. x_factor +. x_abs) *. (1. +. cos_rel)) +. cos_abs)
    }
  =
  assert {
  abs (cos (to_real x_f)) *. cos_rel
  <=. (abs (cos x_exact) +. (x_rel *. x_factor +. x_abs)) *. cos_rel
  }

  use real.Sum
  use int.Int
  use real.FromInt

  function real_fun (f:int -> udouble) : int -> real = fun i -> to_real (f i)

  let lemma sum_double_error_propagation (x : udouble)
                (f : int -> udouble) (f_exact f_factor f_factor' : int -> real) (n:int)
                (sum_rel sum_abs f_rel f_abs : real)
    requires {
      forall i. 0 <= i < n ->
        abs ((real_fun f) i -. f_exact i) <=. f_rel *. f_factor i +. f_abs
    }
    requires {
      forall i. 0 <= i < n ->
      f_factor i -. f_rel *. f_factor i -. f_abs <=. f_factor' i <=. f_factor i +. f_rel *. f_factor i +. f_abs
    }
    requires {
      abs (to_real x -. (sum (real_fun f) 0 n))
        <=. sum_rel *. (sum f_factor' 0 n) +. sum_abs
    }
    requires { 0. <=. sum_rel }
    requires { 0 <= n }
    ensures {
      abs (to_real x -. sum f_exact 0 n)
      <=. (f_rel +. (sum_rel *. (1. +. f_rel))) *. sum f_factor 0 n +.
        ((f_abs *. from_int n *.(1. +. sum_rel)) +. sum_abs)
    }
  =
  sum_approx_err f_rel f_abs (real_fun f) f_exact f_factor 0 n;
  sum_approx_err f_rel f_abs f_factor' f_factor f_factor 0 n;
  assert {
    sum_rel *. sum f_factor' 0 n <=.
    sum_rel *. (sum f_factor 0 n +. ((f_rel *. sum f_factor 0 n) +. (f_abs *. from_int n)))
  }

  (* We don't have an error on y_f because in practice we won't have an exact division with an approximate divisor *)
  let lemma udiv_exact_single_error_propagation (x_f y_f r: udouble) (x x_factor x_rel x_abs : real)
    requires {
      abs (to_real x_f -. x) <=. x_rel *. x_factor +. x_abs
    }
    requires { abs x <=. x_factor }
    requires { 0. <=. x_rel }
    requires { 0. <=. x_abs }
    requires { 0. <> to_real y_f }
    requires { is_exact udiv x_f y_f }
    requires { r = x_f ///. y_f }
    ensures {
      abs (to_real r -. (x /. (to_real y_f))) <=.
        x_rel *. (x_factor /. abs (to_real y_f)) +. ((x_abs /. abs (to_real y_f)) +. eta)
    }
  =
  let lemma y_f_pos ()
    requires { 0. <. to_real y_f }
    ensures {
      abs (to_real r -. (x /. (to_real y_f))) <=.
        x_rel *. (x_factor /. to_real y_f) +. ((x_abs /. to_real y_f) +. eta)
    }
    =
    div_order_compat (to_real x_f) (x +. x_rel *. x_factor +. x_abs) (to_real y_f);
    div_order_compat (x -. x_rel *. x_factor -. x_abs) (to_real x_f) (to_real y_f) in
  let lemma y_f_neg ()
    requires { to_real y_f <. 0. }
    ensures {
      abs (to_real r -. (x /. (to_real y_f))) <=.
        x_rel *. (x_factor /. abs (to_real y_f)) +. ((x_abs /. abs (to_real y_f)) +. eta)
    }
    =
    div_order_compat2 (to_real x_f) (x +. x_rel *. x_factor +. x_abs) (to_real y_f);
    (* TODO: Prove this somehow *)
    assert {
      forall x y. x /. y <=. abs x /. abs y
    };
    assert {
      (x -. x_rel *. x_factor -. x_abs) /. to_real y_f
      <=. x /. (to_real y_f) +. ((x_rel *. x_factor) +. x_abs) /. abs (to_real y_f)
      by
        (-. x_rel *. x_factor -. x_abs) /. to_real y_f
        <=. (x_rel *. x_factor +. x_abs) /. abs (to_real y_f)
    };
    div_order_compat2 (x -. x_rel *. x_factor -. x_abs) (to_real x_f) (to_real y_f);
  in ()
end