1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
|
module Set
use set.Fset
type t = abstract { contents : fset int }
meta coercion function contents
val empty () : t
ensures { result = empty }
val add (x : int) (s : t) : t
ensures { result = add x s }
val mem (x : int) (s : t) : bool
ensures { result <-> mem x s }
end
(* Implementation of integer sets using ordered lists *)
module ListSet : Set
use int.Int
use set.Fset
use list.List
use list.Mem
use list.SortedInt
type elt = int
type t = { ghost contents : fset elt; list : list elt }
invariant { forall x. Fset.mem x contents <-> mem x list }
invariant { sorted list }
by { contents = empty; list = Nil }
meta coercion function contents
let empty () =
{ contents = empty; list = Nil }
let rec add_list x ys
requires { sorted ys }
variant { ys }
ensures { forall y. mem y result <-> mem y ys \/ y = x }
ensures { sorted result }
=
match ys with
| Nil -> Cons x Nil
| Cons y ys' ->
if x < y
then Cons x ys
else if x = y
then ys
else Cons y (add_list x ys')
end
let add x s
ensures { result = add x s }
=
{ contents = add x s.contents; list = add_list x s.list }
let rec mem_list x ys
requires { sorted ys }
variant { ys }
ensures { result <-> mem x ys }
=
match ys with
| Nil -> false
| Cons y ys ->
if x < y
then false
else if x = y
then true
else mem_list x ys
end
let mem x s =
mem_list x s.list
end
module Main
use ListSet
let main () =
let s = empty () in
let s = add 1 s in
let s = add 2 s in
let s = add 3 s in
let b1 = mem 3 s in
let b2 = mem 4 s in
assert { b1 = true /\ b2 = false };
(b1, b2)
end
|