1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
|
(** Binary sort
Binary sort is a variant of insertion sort where binary search is used
to find the insertion point. This lowers the number of comparisons
(from N^2 to N log(N)) and thus is useful when comparisons are costly.
For instance, Binary sort is used as an ingredient in Java 8's
TimSort implementation (which is the library sort for Object[]).
Author: Jean-Christophe Filliâtre (CNRS)
*)
module BinarySort
use int.Int
use int.ComputerDivision
use ref.Ref
use array.Array
use array.ArrayPermut
let lemma occ_shift (m1 m2: int -> 'a) (mid k: int) (x: 'a) : unit
requires { 0 <= mid <= k }
requires { forall i. mid < i <= k -> m2 i = m1 (i - 1) }
requires { m2 mid = m1 k }
ensures { M.Occ.occ x m1 mid (k+1) = M.Occ.occ x m2 mid (k+1) }
= for i = mid to k - 1 do
invariant { M.Occ.occ x m1 mid i = M.Occ.occ x m2 (mid+1) (i+1) }
()
done;
assert { M.Occ.occ (m1 k) m1 mid (k+1) =
1 + M.Occ.occ (m1 k) m1 mid k };
assert { M.Occ.occ (m1 k) m2 mid (k+1) =
1 + M.Occ.occ (m1 k) m2 (mid+1) (k+1) };
assert { M.Occ.occ x m1 mid (k+1) = M.Occ.occ x m2 mid (k+1)
by x = m1 k \/ x <> m1 k }
let binary_sort (a: array int) : unit
ensures { forall i j. 0 <= i <= j < length a -> a[i] <= a[j] }
ensures { permut_sub (old a) a 0 (length a) }
=
for k = 1 to length a - 1 do
(* a[0..k-1) is sorted; insert a[k] *)
invariant { forall i j. 0 <= i <= j < k -> a[i] <= a[j] }
invariant { permut_sub (old a) a 0 (length a) }
let v = a[k] in
let left = ref 0 in
let right = ref k in
while !left < !right do
invariant { 0 <= !left <= !right <= k }
invariant { forall i. 0 <= i < !left -> a[i] <= v }
invariant { forall i. !right <= i < k -> v < a[i] }
variant { !right - !left }
let mid = !left + div (!right - !left) 2 in
if v < a[mid] then right := mid else left := mid + 1
done;
(* !left is the place where to insert value v
so we move a[!left..k) one position to the right *)
label L in
self_blit a !left (!left + 1) (k - !left);
a[!left] <- v;
assert { permut_sub (a at L) a !left (k + 1) };
assert { permut_sub (a at L) a 0 (length a) };
done
end
|