File: bitvector.why

package info (click to toggle)
why3 1.8.2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 45,028 kB
  • sloc: xml: 185,443; ml: 111,224; ansic: 3,998; sh: 2,578; makefile: 2,568; java: 865; python: 720; javascript: 290; lisp: 205; pascal: 173
file content (516 lines) | stat: -rw-r--r-- 13,118 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516


theory BitVector

  use export bool.Bool
  use int.Int
  use power2.Pow2int

  function size : int
  (* size at least 2 since we need 2-complement representation *)
  axiom size_positive: size > 1

  type bv

  function nth bv int: bool

  function bvzero : bv
  axiom Nth_zero:
    forall n:int. 0 <= n < size -> nth bvzero n = False

  function bvone : bv
  axiom Nth_one:
    forall n:int. 0 <= n < size -> nth bvone n = True

  predicate eq (v1 v2 : bv) =
    forall n:int. 0 <= n < size -> nth v1 n = nth v2 n

  axiom extensionality:
    forall v1 v2 : bv. eq v1 v2 -> v1 = v2

  function bw_and (v1 v2 : bv) : bv
  axiom Nth_bw_and:
    forall v1 v2:bv, n:int. 0 <= n < size ->
      nth (bw_and v1 v2) n = andb (nth v1 n) (nth v2 n)

  function bw_or (v1 v2 : bv) : bv
  axiom Nth_bw_or:
    forall v1 v2:bv, n:int. 0 <= n < size ->
      nth (bw_or v1 v2) n = orb (nth v1 n) (nth v2 n)

  function bw_xor (v1 v2 : bv) : bv
  axiom Nth_bw_xor:
    forall v1 v2:bv, n:int. 0 <= n < size ->
      nth (bw_xor v1 v2) n = xorb (nth v1 n) (nth v2 n)

  lemma Nth_bw_xor_v1true:
    forall v1 v2:bv, n:int. 0 <= n < size /\ nth v1 n = True ->
      nth (bw_xor v1 v2) n = notb (nth v2 n)

  lemma Nth_bw_xor_v1false:
    forall v1 v2:bv, n:int. 0 <= n < size /\ nth v1 n = False->
      nth (bw_xor v1 v2) n = nth v2 n

  lemma Nth_bw_xor_v2true:
    forall v1 v2:bv, n:int. 0 <= n < size /\ nth v2 n = True->
      nth (bw_xor v1 v2) n = notb (nth v1 n)

  lemma Nth_bw_xor_v2false:
    forall v1 v2:bv, n:int. 0 <= n < size /\ nth v2 n = False->
      nth (bw_xor v1 v2) n = nth v1 n

  function bw_not (v : bv) : bv
  axiom Nth_bw_not:
    forall v:bv, n:int. 0 <= n < size ->
      nth (bw_not v) n = notb (nth v n)

  (* logical shift right *)
  function lsr bv int : bv
(*
  axiom lsr_nth_low:
    forall b:bv, n s:int.
      0 <= n < size -> 0 <= s ->
        n+s < size -> nth (lsr b s) n = nth b (n+s)

  axiom lsr_nth_high:
    forall b:bv, n s:int.
      0 <= n < size -> 0 <= s ->
        n+s >= size -> nth (lsr b s) n = False
*)
  axiom lsr_nth_low:
    forall b:bv, n s:int.
      0 <= n < size /\ 0 <= s<size /\
        n+s < size -> nth (lsr b s) n = nth b (n+s)

  axiom lsr_nth_high:
    forall b:bv, n s:int.
      0 <= n < size /\ 0 <= s<size /\
        n+s >= size -> nth (lsr b s) n = False

  (* arithmetic shift right *)
  function asr bv int : bv

  axiom asr_nth_low:
    forall b:bv, n s:int.
      0 <= n < size -> 0 <= s ->
        n+s < size -> nth (asr b s) n = nth b (n+s)

  axiom asr_nth_high:
    forall b:bv, n s:int.
      0 <= n < size -> 0 <= s ->
        n+s >= size -> nth (asr b s) n = nth b (size-1)

  (* logical shift left *)
  function lsl bv int : bv

  axiom lsl_nth_high:
    forall b:bv, n s:int.
      0 <= n < size -> 0 <= s ->
        0 <= n-s -> nth (lsl b s) n = nth b (n-s)

  axiom lsl_nth_low:
    forall b:bv, n s:int.
      0 <= n < size -> 0 <= s ->
        0 > n-s -> nth (lsl b s) n = False

  (* conversion to/from integers *)

(*

  function to_nat_aux bv int : int
    (* (to_nat_aux b i) returns the non-negative integer whose
       binary repr is b[size-1..i] *)

  axiom to_nat_aux_zero :
    forall b:bv, i:int.
      0 <= i < size ->
        nth b i = False ->
          to_nat_aux b i = 2 * to_nat_aux b (i+1)

  axiom to_nat_aux_one :
    forall b:bv, i:int.
      0 <= i < size ->
        nth b i = True ->
          to_nat_aux b i = 1 + 2 * to_nat_aux b (i+1)

  axiom to_nat_aux_high :
    forall b:bv, i:int.
      i >= size ->
        to_nat_aux b i = 0


*)


  (* generalization : (to_nat_sub b j i) returns the non-negative number represented
     by b[j..i] *)

 function to_nat_sub bv int int : int
    (* (to_nat_sub b j i) returns the non-negative integer whose
       binary repr is b[j..i] *)

(*  axiom to_nat_sub_zero :
    forall b:bv, j i:int.
      0 <= i <= j ->
        nth b i = False ->
          to_nat_sub b j i = 2 * to_nat_sub b j (i+1)

  axiom to_nat_sub_one :
    forall b:bv, j i:int.
      0 <= i <= j ->
        nth b i = True ->
          to_nat_sub b j i = 1 + 2 * to_nat_sub b j (i+1)

  axiom to_nat_sub_high :
    forall b:bv, j i:int.
      i > j ->
        to_nat_sub b j i = 0
*)

  axiom to_nat_sub_zero :
    forall b:bv, j i:int.
      0 <= i <= j < size ->
        nth b j = False ->
          to_nat_sub b j i = to_nat_sub b (j-1) i

  axiom to_nat_sub_one :
    forall b:bv, j i:int.
      0 <= i <= j < size ->
        nth b j = True ->
          to_nat_sub b j i = (pow2 (j-i)) + to_nat_sub b (j-1) i

  axiom to_nat_sub_high :
    forall b:bv, j i:int.
      i > j ->
        to_nat_sub b j i = 0

(*  lemma to_nat_sub_low_true :
    forall b:bv, j:int.nth b j = True -> to_nat_sub b j j = 1

  lemma to_nat_sub_low_false :
    forall b:bv, j:int.nth b j = False -> to_nat_sub b j j = 0
*)

  lemma to_nat_of_zero2:
    forall b:bv, i j:int. size > j >= i >= 0 ->
      (forall k:int. j >= k > i -> nth b k = False) ->
      to_nat_sub b j 0 = to_nat_sub b i 0


  lemma to_nat_of_zero:
    forall b:bv, j i:int. size > j /\ i >= 0 ->
      (forall k:int. j >= k >= i -> nth b k = False) ->
      to_nat_sub b j i = 0

  let rec lemma to_nat_of_one (b: bv) i j
    requires { size > j >= i >= 0 }
    requires { forall k:int. j >= k >= i -> nth b k = True }
    ensures  { to_nat_sub b j i = pow2 (j-i+1) - 1 }
    variant  { j - i }
  = if j > i then to_nat_of_one b i (j-1)

  lemma to_nat_sub_footprint: forall b1 b2:bv, j i:int. size > j /\ i >=0 ->
    (forall k:int. i <= k <= j -> nth b1 k = nth b2 k) ->
    to_nat_sub b1 j i = to_nat_sub b2 j i
(*
  lemma to_nat_sub_of_zero_ij:
    forall b:bv, i j:int.
      (forall k:int. j >= k >= i -> nth b k = False) ->
      to_nat_sub b j i = 0
*)

(*  function to_nat (b:bv) : int = to_nat_aux b 0*)
  function to_nat (b:bv) : int = to_nat_sub b (size-1) 0

(* this lemma is for TestBv32*)
(*false:::  lemma lsr_to_nat_sub:
    forall b:bv, n s:int.
      0 <= s <size -> to_nat_sub (lsr b s) (size -1) 0 = to_nat_sub b (size-1-s) 0*)
(*
  lemma lsr_to_nat_sub:
    forall b:bv, n s:int.
      0 <= s <size -> to_nat_sub (lsr b s) (size -1) 0 = to_nat_sub b (size-1) s
*)

  (* 2-complement version *)

(*

  function to_int_aux bv int : int
    (* (to_int_aux b i) returns the integer whose
       2-complement binary repr is b[size-1..i] *)

  axiom to_int_aux_zero :
    forall b:bv, i:int.
      0 <= i < size-1 ->
        nth b i = False ->
          to_int_aux b i = 2 * to_int_aux b (i+1)

  axiom to_int_aux_one :
    forall b:bv, i:int.
      0 <= i < size-1 ->
        nth b i = True ->
          to_int_aux b i = 1 + 2 * to_int_aux b (i+1)

  axiom to_int_aux_pos :
    forall b:bv. nth b (size-1) = False ->
         to_int_aux b (size-1) = 0

  axiom to_int_aux_neg :
    forall b:bv. nth b (size-1) = True ->
         to_int_aux b (size-1) = -1
  lemma to_int_zero:
    forall b:bv. (forall i:int. 0 <= i <size-1-> nth b i = False)
                  -> to_int_aux b 0 = 0
  lemma to_int_one:
    forall b:bv. (forall i:int. 0 <= i <size-> nth b i = True)
                  -> to_int_aux b 0 = -1


  function to_int (b:bv) : int = to_int_aux b 0

*)

  (* (from_uint n) returns the bitvector representing the non-negative
     integer n on size bits. *)
  function from_int (n:int) : bv

  use int.EuclideanDivision


(*  axiom nth_from_int_high:
     forall n i:int. size>i > 0 -> nth (from_int n) i = nth (from_int (div n 2)) (i-1)
*)


 (*Notice: replace 0 <= i <size by 0 <= i < size-1 because the bit at (size -1) is the sign of i*)
(* axiom from_int_sign_positive:
       forall n:int. n>=0 -> nth (from_int n) (size - 1) = False
 axiom from_int_sign_negative:
       forall n:int. n<0 -> nth (from_int n) (size - 1) = True
*)

  axiom nth_from_int_high_even:
     forall n i:int. size > i >= 0 /\ mod (div n (pow2 i)) 2 = 0 -> nth (from_int n) i = False

  axiom nth_from_int_high_odd:
     forall n i:int. size > i >= 0 /\ mod (div n (pow2 i)) 2 <> 0 -> nth (from_int n) i = True

  lemma nth_from_int_low_even:
    forall n:int. mod n 2 = 0 -> nth (from_int n) 0 = False

  lemma nth_from_int_low_odd:
    forall n:int. mod n 2 <> 0 -> nth (from_int n) 0 = True

  lemma nth_from_int_0:
     forall i:int. size > i >= 0 -> nth (from_int 0) i = False

(*********************************************************************)
(*from_int2c: int -> bv                                              *)
(*        Take an integer as input and returns a bv with 2-complement*)
(*        bit size-1:sign, false if n is non-negative, true otherwise*)
(*********************************************************************)
  function from_int2c (n:int) : bv

(*********************************************************************)
(* axiom for n is non-negative                                       *)
(*********************************************************************)

  axiom nth_sign_positive:
     forall n :int. n>=0 -> nth (from_int2c n) (size-1) = False

(*********************************************************************)
(* axiom for n is negative                                           *)
(*********************************************************************)

  axiom nth_sign_negative:
     forall n:int. n<0 -> nth (from_int2c n) (size-1) = True

(*********************************************************************)
(* axioms for any n                                          *)
(*********************************************************************)

  axiom nth_from_int2c_high_even:
     forall n i:int. size-1 > i >= 0 /\ mod (div n (pow2 i)) 2 = 0
                             -> nth (from_int2c n) i = False

  axiom nth_from_int2c_high_odd:
     forall n i:int. size-1 > i >= 0 /\ mod (div n (pow2 i)) 2 <> 0
                             -> nth (from_int2c n) i = True

  lemma nth_from_int2c_low_even:
    forall n:int. mod n 2 = 0 -> nth (from_int2c n) 0 = False

  lemma nth_from_int2c_low_odd:
    forall n:int. mod n 2 <> 0 -> nth (from_int2c n) 0 = True

  lemma nth_from_int2c_0:
     forall i:int. size > i >= 0 -> nth (from_int2c 0) i = False

  lemma nth_from_int2c_plus_pow2:
      forall x k i:int. 0 <= k < i /\ k < size-1 ->
        nth (from_int2c (x+pow2 i)) k = nth (from_int2c x) k

end


theory BV32

  function size : int = 32

  clone export BitVector with function size, lemma size_positive, axiom .

end


theory BV64

  function size : int = 64

  clone export BitVector with function size, lemma size_positive, axiom .

end

theory BV32_64

  use int.Int

  use BV32 as BV32
  use BV64 as BV64

  function concat BV32.bv BV32.bv : BV64.bv

  axiom concat_low: forall b1 b2:BV32.bv.
    forall i:int. 0 <= i < 32 -> BV64.nth (concat b1 b2) i = BV32.nth b2 i

  axiom concat_high: forall b1 b2:BV32.bv.
    forall i:int. 32 <= i < 64 -> BV64.nth (concat b1 b2) i = BV32.nth b1 (i-32)

end


theory TestBv32

  use BV32
  use int.Int

  goal Test1:
    let b = bw_and bvzero bvone in nth b 1 = False

  goal Test2:
    let b = lsr bvone 16 in nth b 15 = True

  goal Test3:
    let b = lsr bvone 16 in nth b 16 = False

  goal Test4:
    let b = asr bvone 16 in nth b 15 = True

  goal Test5:
    let b = asr bvone 16 in nth b 16 = True

  goal Test6:
    let b = asr (lsr bvone 1) 16 in nth b 16 = False

  goal to_nat_0x00000000:
    to_nat bvzero = 0

  goal to_nat_0x00000001:
    to_nat (lsr bvone 31) = 1

  goal to_nat_0x00000003:
    to_nat (lsr bvone 30) = 3

  goal to_nat_0x00000007:
    to_nat (lsr bvone 29) = 7

  goal to_nat_0x0000000F:
    to_nat (lsr bvone 28) = 15

  goal to_nat_0x0000001F:
    to_nat (lsr bvone 27) = 31

  goal to_nat_0x0000003F:
    to_nat (lsr bvone 26) = 63

  goal to_nat_0x0000007F:
    to_nat (lsr bvone 25) = 127

  goal to_nat_0x000000FF:
    to_nat (lsr bvone 24) = 255

  goal to_nat_0x000001FF:
    to_nat (lsr bvone 23) = 511

  goal to_nat_0x000003FF:
    to_nat (lsr bvone 22) = 1023

  goal to_nat_0x000007FF:
    to_nat (lsr bvone 21) = 2047

  goal to_nat_0x00000FFF:
    to_nat (lsr bvone 20) = 4095

  goal to_nat_0x00001FFF:
    to_nat (lsr bvone 19) = 8191

  goal to_nat_0x00003FFF:
    to_nat (lsr bvone 18) = 16383

  goal to_nat_0x00007FFF:
    to_nat (lsr bvone 17) = 32767

  goal to_nat_0x0000FFFF:
    to_nat (lsr bvone 16) = 65535

(*
  goal to_nat_smoke:
    to_nat (lsr bvone 16) = 65536
*)

  goal to_nat_0x0001FFFF:
    to_nat (lsr bvone 15) = 131071

  goal to_nat_0x0003FFFF:
    to_nat (lsr bvone 14) = 262143

  goal to_nat_0x0007FFFF:
    to_nat (lsr bvone 13) = 524287

  goal to_nat_0x000FFFFF:
    to_nat (lsr bvone 12) = 1048575

  goal to_nat_0x00FFFFFF:
    to_nat (lsr bvone 8) = 16777215

  goal to_nat_0xFFFFFFFF:
    to_nat bvone = 4294967295

(*
  goal to_int_0x00000000:
    to_int bvzero = 0

  goal to_int_0xFFFFFFFF:
    to_int bvone = -1

  goal to_int_0x7FFFFFFF:
    to_int (lsr bvone 1) = 2147483647

  goal to_int_0x80000000:
    to_int (lsl bvone 31) = -2147483648

  goal to_int_0x0000FFFF:
    to_int (lsr bvone 16) = 65535

  goal to_int_smoke:
    to_int (lsr bvone 16) = 65536

*)

end

(*
Local Variables:
compile-command: "why3 ide -L . bitvector.why"
End:
*)