1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
module Bitwalker
use int.Int
use int.EuclideanDivision
use array.Array
use ref.Ref
(* use bv.BV32 *)
(* use bv.BV8 *)
(* use bv.BV64 *)
use mach.bv.BVCheck8 as BV8
use mach.bv.BVCheck32 as BV32
use mach.bv.BVCheck64 as BV64
use bv.BVConverter_32_64 as C32_64
use bv.BVConverter_8_32 as C8_32
(* file missing in repository
use mach.bv.BV
*)
function nth8_stream (stream : array BV8.t) (pos : int) : bool =
BV8.nth stream[div pos 8] (7 - mod pos 8)
lemma nth64:
forall value:BV64.t, i:int. 0 <= i < 64 ->
BV64.nth value i = BV64.nth_bv value (C32_64.toBig (BV32.of_int i))
lemma nth8:
forall value:BV8.t, i:int. 0 <= i < 8 ->
BV8.nth value i = BV8.nth_bv value (C8_32.toSmall (BV32.of_int i))
(* *)
let function maxvalue (len : BV32.t) : BV64.t =
BV64.lsl_bv (1:BV64.t) (C32_64.toBig len)
let lemma nth_ultpre0 (x:BV64.t) (len:BV32.t)
requires { BV32.t'int len < 64}
ensures { BV64.eq_sub x BV64.zeros (BV32.t'int len) (64 - BV32.t'int len)
<-> BV64.t'int x < BV64.t'int (maxvalue len) }
=
assert { BV32.ult len (64:BV32.t) };
assert { BV64.eq_sub_bv x BV64.zeros (C32_64.toBig len) (BV64.sub (64:BV64.t) (C32_64.toBig len))
<-> BV64.ult x (maxvalue len) }
(** return `value` with the bit of index `left` from the left set to `flag` *)
let poke_64bit_bv (value : BV64.t) (left : BV32.t) (flag : bool) : BV64.t
requires { BV32.t'int left < 64 }
ensures { forall i. 0 <= i < 64 /\ i <> 63 - BV32.t'int left ->
BV64.nth result i = BV64.nth value i }
ensures { flag = BV64.nth result (63 - BV32.t'int left) }
=
assert { BV32.ult left (64:BV32.t) };
begin
ensures { forall i:BV32.t. i <> BV32.sub (63:BV32.t) left ->
BV64.nth_bv result (C32_64.toBig i) =
BV64.nth_bv value (C32_64.toBig i) }
ensures { flag = BV64.nth_bv result
(C32_64.toBig (BV32.sub (63:BV32.t) left)) }
let mask =
BV64.lsl_bv (1:BV64.t)
(C32_64.toBig (BV32.u_sub (63:BV32.t) left))
in
match flag with
| True -> BV64.bw_or value mask
| False -> BV64.bw_and value (BV64.bw_not mask)
end
end
(** return `value` with the bit of index `left` from the left set to `flag` *)
(* version where `left` is an int and not a bitvector, which
is closer to the result of the SPARK translation from signed
integers *)
let poke_64bit (value : BV64.t) (left : int) (flag : bool) : BV64.t
requires { 0 <= left < 64 }
ensures { forall i. 0 <= i < 64 /\ i <> 63 - left ->
BV64.nth result i = BV64.nth value i }
ensures { flag = BV64.nth result (63 - left) }
=
let ghost left_bv = BV64.of_int left in
assert { BV64.ult left_bv (64:BV64.t) };
assert { (BV64.sub (63:BV64.t) left_bv) = BV64.of_int (63 - left) };
begin
ensures { forall i:BV64.t. BV64.ule i (63:BV64.t) ->
i <> BV64.sub (63:BV64.t) left_bv ->
BV64.nth_bv result i = BV64.nth_bv value i }
ensures { flag = BV64.nth_bv result (BV64.sub (63:BV64.t) left_bv) }
let mask =
BV64.lsl_bv (1:BV64.t) (BV64.of_int (63 - left))
in
match flag with
| True -> BV64.bw_or value mask
| False -> BV64.bw_and value (BV64.bw_not mask)
end
end
(* return the bit of `byte` at position `left` starting from the
left *)
let peek_8bit_bv (byte : BV8.t) (left : BV32.t) : bool
requires { 0 <= BV32.t'int left < 8 }
ensures { result = BV8.nth byte (7 - BV32.t'int left) }
=
assert {BV32.ult left (8:BV32.t)};
begin
ensures {
result = BV8.nth_bv
byte (BV8.sub (7:BV8.t) (C8_32.toSmall left))}
let mask =
BV32.lsl_bv (1:BV32.t) (BV32.u_sub (7:BV32.t) left)
in
not (BV32.eq (BV32.bw_and (C8_32.toBig byte) mask) 0x0)
end
(* return the bit of the `left`/8 element of `addr` at position mod `left` 8 starting from the left *)
let peek_8bit_array (addr : array BV8.t) (left : BV32.t) : bool
requires { 8 * (length addr) < BV32.two_power_size }
requires { BV32.t'int left < 8 * length addr }
ensures { result = nth8_stream addr (BV32.t'int left) }
=
peek_8bit_bv (addr[ BV32.to_uint (BV32.u_div left (8:BV32.t)) ]) (BV32.u_rem left (8:BV32.t))
(* return a bitvector of 64 bits with its `len` bits of the right
set to the bits between `start` and `start+len` of `addr` *)
let peek (start : BV32.t) (len : BV32.t) (addr : array BV8.t) : BV64.t
requires { BV32.t'int len <= 64 }
requires { BV32.t'int start + BV32.t'int len < BV32.two_power_size }
requires { 8 * length addr < BV32.two_power_size }
ensures { BV32.t'int start + BV32.t'int len > (8 * length addr) ->
result = BV64.zeros }
ensures { BV32.t'int start + BV32.t'int len <= (8 * length addr) ->
(forall i:int. 0 <= i < BV32.t'int len ->
BV64.nth result i
= nth8_stream addr (BV32.t'int start + BV32.t'int len - i - 1))
/\
(forall i:int. BV32.t'int len <= i < 64 -> BV64.nth result i = False) }
=
if (BV32.to_uint (BV32.u_add start len) > ( 8 *length addr ))
then
0x0
else
let retval = ref 0x0 in
let i = ref 0x0 in
let lstart = BV32.u_sub (64:BV32.t) len in
while BV32.ult !i len do variant{ BV32.t'int len - BV32.t'int !i }
invariant {0 <= BV32.t'int !i <= BV32.t'int len}
invariant {forall j:int. BV32.t'int len - BV32.t'int !i <= j < BV32.t'int len ->
BV64.nth !retval j
= nth8_stream addr (BV32.t'int start + BV32.t'int len - j - 1)}
invariant {forall j:int. 0 <= j < BV32.t'int len - BV32.t'int !i ->
BV64.nth !retval j
= False}
invariant {forall j:int. BV32.t'int len <= j < 64 ->
BV64.nth !retval j
= False}
let flag = peek_8bit_array addr (BV32.u_add start !i) in
retval := poke_64bit_bv !retval (BV32.u_add lstart !i) flag;
i := BV32.u_add !i (1:BV32.t);
done;
!retval
let peek_64bit (value : BV64.t) (left : BV32.t) : bool
requires {BV32.t'int left < 64}
ensures {result = BV64.nth value (63 - BV32.t'int left)}
=
assert {BV32.ult left (64:BV32.t)};
begin
ensures {result = BV64.nth_bv value
(BV64.sub (63:BV64.t) (C32_64.toBig left))}
let mask = BV64.lsl_bv (1:BV64.t)
(C32_64.toBig (BV32.u_sub (63:BV32.t) left)) in
not (BV64.eq (BV64.bw_and value mask) 0x0)
end
(*
static inline uint8_t PokeBit8(uint8_t byte, uint32_t left, int flag)
{
uint8_t mask = ((uint8_t) 1) << (7u - left);
return (flag == 0) ? (byte & ~mask) : (byte | mask);
}
*)
(* return `byte` with the bit at index `left` from the left set to `flag` *)
let poke_8bit (byte : BV8.t) (left : BV32.t) (flag : bool) : BV8.t
requires { BV32.t'int left < 8 }
ensures { forall i:int. 0 <= i < 8 -> i <> 7 - BV32.t'int left ->
BV8.nth result i = BV8.nth byte i }
ensures { BV8.nth result (7 - BV32.t'int left) = flag }
=
assert { BV32.ult left (8:BV32.t) };
begin
ensures { forall i:BV32.t. BV32.ult i (8:BV32.t) ->
i <> BV32.sub (7:BV32.t) left ->
BV8.nth_bv result (C8_32.toSmall i)
= BV8.nth_bv byte (C8_32.toSmall i) }
ensures { BV8.nth_bv result (BV8.sub (7:BV8.t) (C8_32.toSmall left))
= flag }
let mask = BV8.lsl_bv (1:BV8.t) (BV8.u_sub (7:BV8.t) (C8_32.toSmall left)) in
match flag with
| True -> BV8.bw_or byte mask
| False -> BV8.bw_and byte (BV8.bw_not mask)
end
end
let poke_8bit_array (addr : array BV8.t) (left : BV32.t) (flag : bool)
requires { 8 * (length addr) < BV32.two_power_size }
requires { BV32.t'int left < 8 * length addr }
writes { addr }
ensures { forall i:int. 0 <= i < 8 * length addr -> i <> BV32.t'int left ->
nth8_stream addr i = nth8_stream (old addr) i}
ensures { nth8_stream addr (BV32.t'int left) = flag }
=
let i = BV32.u_div left (8:BV32.t) in
let k = BV32.u_rem left (8:BV32.t) in
addr[BV32.to_uint i] <- poke_8bit addr[BV32.to_uint i] k flag
let poke (start : BV32.t) (len : BV32.t) (addr : array BV8.t) (value : BV64.t) : int
writes { addr }
requires{ BV32.t'int len < 64 } (* could be lower or equal if maxvalue and the condition to return -2 is corrected *)
requires{ BV32.t'int start + BV32.t'int len < BV32.two_power_size }
requires{ 8 * length addr < BV32.two_power_size }
ensures { -2 <= result <= 0 }
ensures { result = -1 <-> BV32.t'int start + BV32.t'int len > 8 * length addr }
ensures { result = -2 <-> BV64.t'int (maxvalue len) <= BV64.t'int value /\ BV32.t'int start + BV32.t'int len <= 8 * length addr }
ensures { result = 0 <-> BV64.t'int (maxvalue len) > BV64.t'int value /\ BV32.t'int start + BV32.t'int len <= 8 * length addr }
ensures { result = 0 ->
(forall i:int. 0 <= i < BV32.t'int start ->
nth8_stream (old addr) i
= nth8_stream addr i)
/\
(forall i:int. BV32.t'int start <= i < BV32.t'int start + BV32.t'int len ->
nth8_stream addr i
= BV64.nth value (BV32.t'int len - i - 1 + BV32.t'int start))
/\
(forall i:int. BV32.t'int start + BV32.t'int len <= i < 8 * length addr ->
nth8_stream addr i
= nth8_stream (old addr) i) }
=
if BV32.to_uint (BV32.u_add start len) > 8 * length addr
then
-1 (*error: invalid_bit_sequence*)
else
if BV64.uge value (maxvalue len) (* should be len <> 64 && _..._ *)
then
-2 (*error: value_too_big*)
else
let lstart = BV32.u_sub (64:BV32.t) len in
let i = ref 0x0 in
while BV32.ult !i len do variant { BV32.t'int len - BV32.t'int !i }
invariant {0 <= BV32.t'int !i <= BV32.t'int len}
invariant {forall j:int. 0 <= j < BV32.t'int start ->
nth8_stream (old addr) j
= nth8_stream addr j}
invariant {forall j:int. BV32.t'int start <= j < BV32.t'int start + BV32.t'int !i ->
nth8_stream addr j
= BV64.nth value (BV32.t'int len - j - 1 + BV32.t'int start) }
invariant {forall j:int. BV32.t'int start + BV32.t'int !i <= j < 8 * length addr ->
nth8_stream addr j
= nth8_stream (old addr) j }
let flag = peek_64bit value (BV32.u_add lstart !i) in
poke_8bit_array addr (BV32.u_add start !i) flag;
assert {nth8_stream addr (BV32.t'int start + BV32.t'int !i)
= BV64.nth value ((BV32.t'int len - BV32.t'int !i - 1))};
assert { forall k. BV32.t'int start <= k < BV32.t'int start + BV32.t'int !i ->
k <> BV32.t'int start + BV32.t'int !i &&
0 <= k < 8 * length addr &&
nth8_stream addr k
= BV64.nth value (BV32.t'int start + BV32.t'int len - k - 1)};
i := BV32.u_add !i (1:BV32.t);
done;
0
let peekthenpoke (start len : BV32.t) (addr : array BV8.t)
requires {8 * length addr < BV32.two_power_size}
requires {0 <= BV32.t'int len < 64}
requires {BV32.t'int start + BV32.t'int len <= 8 * length addr}
ensures {result = 0}
ensures {forall i. 0 <= i < 8 * length addr ->
nth8_stream addr i = nth8_stream (old addr) i}
=
let value = peek start len addr in
let res = poke start len addr value in
assert {res = 0};
assert {forall i. BV32.t'int start <= i < BV32.t'int start + BV32.t'int len ->
nth8_stream addr i
= nth8_stream (old addr) i};
res
let pokethenpeek (start len : BV32.t) (addr : array BV8.t) (value : BV64.t)
writes {addr}
requires {8 * length addr < BV32.two_power_size}
requires {0 <= BV32.t'int len < 64}
requires {BV32.t'int start + BV32.t'int len <= 8 * length addr}
requires {BV64.t'int value < BV64.t'int (maxvalue len)}
ensures {result = value}
=
assert { forall i:int. BV32.t'int len <= i < 64 ->
BV64.nth value i = False };
let poke_result = poke start len addr value in
assert { poke_result = 0 };
let peek_result = peek start len addr in
assert { BV64.(==) peek_result value };
peek_result
end
|