1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
|
(* {1 Bubble sort} *)
module BubbleSort
use int.Int
use ref.Ref
use array.Array
use array.IntArraySorted
use array.ArraySwap
use array.ArrayPermut
let bubble_sort (a: array int)
ensures { permut_all (old a) a }
ensures { sorted a }
= for i = length a - 1 downto 1 do
invariant { permut_all (old a) a }
invariant { sorted_sub a i (length a) }
invariant { forall k1 k2: int.
0 <= k1 <= i < k2 < length a -> a[k1] <= a[k2] }
for j = 0 to i - 1 do
invariant { permut_all (old a) a }
invariant { sorted_sub a i (length a) }
invariant { forall k1 k2: int.
0 <= k1 <= i < k2 < length a -> a[k1] <= a[k2] }
invariant { forall k. 0 <= k <= j -> a[k] <= a[j] }
if a[j] > a[j+1] then swap a j (j+1);
done;
done
let test1 () =
let a = make 3 0 in
a[0] <- 7; a[1] <- 3; a[2] <- 1;
bubble_sort a;
a
let test2 () ensures { result.length = 8 } =
let a = make 8 0 in
a[0] <- 53; a[1] <- 91; a[2] <- 17; a[3] <- -5;
a[4] <- 413; a[5] <- 42; a[6] <- 69; a[7] <- 6;
bubble_sort a;
a
exception BenchFailure
let bench () raises { BenchFailure -> true } =
let a = test2 () in
if a[0] <> -5 then raise BenchFailure;
if a[1] <> 6 then raise BenchFailure;
if a[2] <> 17 then raise BenchFailure;
if a[3] <> 42 then raise BenchFailure;
if a[4] <> 53 then raise BenchFailure;
if a[5] <> 69 then raise BenchFailure;
if a[6] <> 91 then raise BenchFailure;
if a[7] <> 413 then raise BenchFailure;
a
end
(* {2 Knuth's version}
This is the version of bubble sort we can find in TAOCP, volume 3,
section 5.2.2 (page 107).
Though Knuth is concluding with ``In short, the bubble sort seems
to have nothing to recommend it, except a catchy name and the fact
that it leads to some interesting theoretical problems'', the
following makes yet another nice exercise in program verification.
*)
module TAOCP
use int.Int
use ref.Ref
use array.Array
use array.IntArraySorted
use array.ArraySwap
use array.ArrayPermut
let bubble_sort (a: array int) : unit
writes { a }
ensures { permut_all (old a) a }
ensures { sorted a }
= let n = length a in
let ref bound = n in
while bound >= 2 do
invariant { bound <= n }
invariant { permut_all (old a) a }
invariant { forall i1 i2. 0 <= i1 < bound <= i2 < n -> a[i1] <= a[i2] }
invariant { sorted_sub a bound n }
variant { bound }
let ref t = 0 in
for j = 0 to bound - 2 do
invariant { 0 <= t <= j }
invariant { permut_all (old a) a }
invariant { forall i1 i2. 0 <= i1 < bound <= i2 < n -> a[i1] <= a[i2] }
invariant { forall i. 0 <= i <= t -> a[i] <= a[t] }
invariant { sorted_sub a t (j+1) }
invariant { sorted_sub a bound n }
if a[j] > a[j+1] then (swap a j (j+1); t <- j+1)
done;
bound <- t
done
end
|