1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
use int.Int
use bintree.AVL
use coma.Std
let unTree (t: tree) (onNode [] (l:tree) (x: elt) (r:tree)) (onLeaf) =
any
[ node (h: int) (x: elt) (l r: tree) ->
{ t = N h l x r } (! onNode {l} {x} {r})
| leaf ->
{ t = E } (! onLeaf) ]
let rotate_left (t: tree) (return (r: tree)) =
unTree {t} (fun (a:tree) (x:elt) (r:tree) ->
unTree {r} (fun (b:tree) (y:elt) (c:tree) ->
return {node (node a x b) y c})
fail) fail
let rotate_right (t: tree) (return (r: tree)) =
unTree {t} (fun (l:tree) (y:elt) (c:tree) ->
unTree {l} (fun (a:tree) (x:elt) (b:tree) ->
return {node a x (node b y c)})
fail) fail
let join_right (l: tree) (x: elt) (r: tree) (return (t: tree)) =
{ bst l && tree_lt l x } { bst r && lt_tree x r }
{ wf l && wf r } { avl l && avl r } { height l >= height r + 2 } (!
any
)
[ return (t: tree) ->
{ bst t } { forall y. mem y t <-> (mem y l || y=x || mem y r) }
{ wf t } { avl t }
{ height t = height l ||
height t = height l + 1 && match t with
| N _ rl _ rr ->
height rl = height l - 1 && height rr = height l
| _ -> false end }
(! return {t}) ]
(* TODO join_right, join_left
= match l with
| N _ ll lx lr ->
if ht lr <= ht r + 1 then
let t = node lr x r in
if ht t <= ht ll + 1 then node ll lx t
else rotate_left (node ll lx (rotate_right t))
else
let t = join_right lr x r in
let t' = node ll lx t in
if ht t <= ht ll + 1 then t' else rotate_left t'
(* The CRITICAL postcondition is used here, when `rotate_left`
is used, to show that the rotated tree is indeed an AVL. *)
| E -> absurd
end
*)
let join_left (l: tree) (x: elt) (r: tree) (return (t: tree)) =
{ bst l && tree_lt l x } { bst r && lt_tree x r }
{ wf l && wf r } { avl l && avl r } { height r >= height l + 2 } (!
any
)
[ return (t: tree) ->
{ bst t } { forall y. mem y t <-> (mem y l || y=x || mem y r) }
{ wf t } { avl t }
{ height t = height r ||
height t = height r + 1 && match t with
| N _ rl _ rr ->
height rr = height r - 1 && height rl = height r
| _ -> false end }
(! return {t}) ]
(*
= match r with
| N _ rl rx rr ->
if ht rl <= ht l + 1 then
let t = node l x rl in
if ht t <= ht rr + 1 then node t rx rr
else rotate_right (node (rotate_left t) rx rr)
else
let t = join_left l x rl in
let t' = node t rx rr in
if ht t <= ht rr + 1 then t' else rotate_right t'
| E -> absurd
end
*)
let join (l: tree) (x: elt) (r: tree) (return (r: tree)) =
{ bst l && tree_lt l x } { bst r && lt_tree x r }
{ wf l && wf r } { avl l && avl r } (!
if { ht l > ht r + 1 }
(-> join_right {l} {x} {r} return)
(-> if { ht r > ht l + 1 } (-> join_left {l} {x} {r} return)
(-> return {node l x r})))
[ return (t:tree)
{ wf t && avl t }
{ bst t }
{ forall y. mem y t <-> (mem y l || y=x || mem y r) }
-> return {t} ]
let rec split_last (t: tree) (return (r: tree) (m: elt)) =
unTree {t}
(fun (l: tree) (x: elt) (r: tree) ->
{ wf t && bst t && avl t } (!
if {r=E} (-> return {l} {x})
(-> split_last {r} (fun (r':tree) (m:elt) ->
join {l} {x} {r'} (fun (r:tree) ->
return {r} {m}))))
[ return (r: tree) (m: elt)
{ wf r && bst r && avl r }
{ forall x. mem x t <-> (mem x r && lt x m || x=m) }
{ tree_lt r m }
-> return {r} {m} ])
fail
(* no need for a spec here => join2 is fully inlined *)
let join2 (l r: tree) (return (t: tree)) =
if {l=E} (-> return {r})
(-> split_last {l} (fun (l:tree) (k:elt) ->
join {l} {k} {r} return))
let rec split (t: tree) (y: elt) (return (l: tree) (b: bool) (r: tree)) =
unTree {t}
(fun (l:tree) (x:elt) (r:tree) ->
{ wf t && bst t && avl t }
(!
if {y=x} (-> return {l} {true} {r})
(-> if {lt y x} (-> split {l} {y} (fun (ll:tree) (b:bool) (lr:tree) ->
join {lr} {x} {r} (fun (r':tree) ->
return {ll} {b} {r'})))
(-> split {r} {y} (fun (rl:tree) (b:bool) (rr:tree) ->
join {l} {x} {rl} (fun (l':tree) ->
return {l'} {b} {rr}))))
)
[return (l: tree) (b: bool) (r: tree) ->
{ wf l && bst l && avl l } { wf r && bst r && avl r }
{ tree_lt l y } { lt_tree y r }
{ forall x. mem x t <-> (mem x l || mem x r || b && x=y) }
(! return {l} {b} {r}) ]
)
(-> return {E} {false} {E})
let insert (x: elt) (t: tree) (return (r: tree)) =
{ wf t && bst t && avl t } (!
split {t} {x} (fun (l:tree) (_b:bool) (r:tree) ->
join {l} {x} {r} return)
)
[ return (r:tree) ->
{ wf r && bst r && avl r }
{ forall y. mem y r <-> (mem y t || y=x) }
(! return {r}) ]
let delete (x: elt) (t: tree) (return (r: tree)) =
{ wf t && bst t && avl t } (!
split {t} {x} (fun (l: tree) (b: bool) (r: tree) ->
join2 {l} {r} return)
)
[ return (r:tree) ->
{ wf r && bst r && avl r }
{ forall y. mem y r <-> (mem y t && y<>x) }
(! return {r}) ]
|