File: avl.coma

package info (click to toggle)
why3 1.8.2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 45,028 kB
  • sloc: xml: 185,443; ml: 111,224; ansic: 3,998; sh: 2,578; makefile: 2,568; java: 865; python: 720; javascript: 290; lisp: 205; pascal: 173
file content (160 lines) | stat: -rw-r--r-- 5,418 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

use int.Int
use bintree.AVL
use coma.Std

let unTree (t: tree) (onNode [] (l:tree) (x: elt) (r:tree)) (onLeaf) =
  any
  [ node (h: int) (x: elt) (l r: tree) ->
        { t = N h l x r } (! onNode {l} {x} {r})
  | leaf ->
        { t = E } (! onLeaf) ]

let rotate_left (t: tree) (return (r: tree)) =
  unTree {t} (fun (a:tree) (x:elt) (r:tree) ->
  unTree {r} (fun (b:tree) (y:elt) (c:tree) ->
  return {node (node a x b) y c})
  fail) fail

let rotate_right (t: tree) (return (r: tree)) =
  unTree {t} (fun (l:tree) (y:elt) (c:tree) ->
  unTree {l} (fun (a:tree) (x:elt) (b:tree) ->
  return {node a x (node b y c)})
  fail) fail

let join_right (l: tree) (x: elt) (r: tree) (return (t: tree)) =
   { bst l && tree_lt l x } { bst r && lt_tree x r }
   { wf l && wf r } { avl l && avl r } { height l >= height r + 2 } (!
   any
   )
   [ return (t: tree) ->
      { bst t } { forall y. mem y t <-> (mem y l || y=x || mem y r) }
      { wf t } { avl t }
      { height t = height l ||
        height t = height l + 1 && match t with
          | N _ rl _ rr ->
              height rl = height l - 1 && height rr = height l
          | _ -> false end }
      (! return {t}) ]

(* TODO join_right, join_left
= match l with
  | N _ ll lx lr ->
      if ht lr <= ht r + 1 then
        let t = node lr x r in
        if ht t <= ht ll + 1 then node ll lx t
        else rotate_left (node ll lx (rotate_right t))
      else
        let t = join_right lr x r in
        let t' = node ll lx t in
        if ht t <= ht ll + 1 then t' else rotate_left t'
        (* The CRITICAL postcondition is used here, when `rotate_left`
           is used, to show that the rotated tree is indeed an AVL. *)
  | E -> absurd
  end
*)

let join_left (l: tree) (x: elt) (r: tree) (return (t: tree)) =
   { bst l && tree_lt l x } { bst r && lt_tree x r }
   { wf l && wf r } { avl l && avl r } { height r >= height l + 2 } (!
   any
   )
   [ return (t: tree) ->
      { bst t } { forall y. mem y t <-> (mem y l || y=x || mem y r) }
      { wf t } { avl t }
      { height t = height r ||
        height t = height r + 1 && match t with
          | N _ rl _ rr ->
              height rr = height r - 1 && height rl = height r
          | _ -> false end }
      (! return {t}) ]
(*
= match r with
  | N _ rl rx rr ->
      if ht rl <= ht l + 1 then
        let t = node l x rl in
        if ht t <= ht rr + 1 then node t rx rr
        else rotate_right (node (rotate_left t) rx rr)
      else
        let t = join_left l x rl in
        let t' = node t rx rr in
        if ht t <= ht rr + 1 then t' else rotate_right t'
  | E -> absurd
  end
 *)

let join (l: tree) (x: elt) (r: tree) (return (r: tree)) =
  { bst l && tree_lt l x } { bst r && lt_tree x r }
  { wf l && wf r } { avl l && avl r } (!
  if { ht l > ht r + 1 }
     (-> join_right {l} {x} {r} return)
     (-> if { ht r > ht l + 1 } (-> join_left {l} {x} {r} return)
                                (-> return {node l x r})))
  [ return (t:tree)
      { wf t && avl t }
      { bst t }
      { forall y. mem y t <-> (mem y l || y=x || mem y r) }
    -> return {t} ]

let rec split_last (t: tree) (return (r: tree) (m: elt)) =
  unTree {t}
    (fun (l: tree) (x: elt) (r: tree) ->
       { wf t && bst t && avl t } (!
       if {r=E} (-> return {l} {x})
                (-> split_last {r} (fun (r':tree) (m:elt) ->
                    join {l} {x} {r'} (fun (r:tree) ->
                    return {r} {m}))))
       [ return (r: tree) (m: elt)
         { wf r && bst r && avl r }
         { forall x. mem x t <-> (mem x r && lt x m || x=m) }
         { tree_lt r m }
         -> return {r} {m} ])
    fail

(* no need for a spec here => join2 is fully inlined *)
let join2 (l r: tree) (return (t: tree)) =
  if {l=E} (-> return {r})
           (-> split_last {l} (fun (l:tree) (k:elt) ->
               join {l} {k} {r} return))

let rec split (t: tree) (y: elt) (return (l: tree) (b: bool) (r: tree)) =
  unTree {t}
    (fun (l:tree) (x:elt) (r:tree) ->
       { wf t && bst t && avl t }
       (!
       if {y=x} (-> return {l} {true} {r})
                (-> if {lt y x} (-> split {l} {y} (fun (ll:tree) (b:bool) (lr:tree) ->
                                    join {lr} {x} {r} (fun (r':tree) ->
                                    return {ll} {b} {r'})))
                                (-> split {r} {y} (fun (rl:tree) (b:bool) (rr:tree) ->
                                    join {l} {x} {rl} (fun (l':tree) ->
                                    return {l'} {b} {rr}))))
       )
       [return (l: tree) (b: bool) (r: tree) ->
         { wf l && bst l && avl l } { wf r && bst r && avl r }
         { tree_lt l y } { lt_tree y r }
         { forall x. mem x t <-> (mem x l || mem x r || b && x=y) }
         (! return {l} {b} {r}) ]
    )
    (-> return {E} {false} {E})

let insert (x: elt) (t: tree) (return (r: tree)) =
  { wf t && bst t && avl t } (!
    split {t} {x} (fun (l:tree) (_b:bool) (r:tree) ->
    join {l} {x} {r} return)
  )
  [ return (r:tree) ->
      { wf r && bst r && avl r }
      { forall y. mem y r <-> (mem y t || y=x) }
      (! return {r}) ]

let delete (x: elt) (t: tree) (return (r: tree)) =
  { wf t && bst t && avl t } (!
    split {t} {x} (fun (l: tree) (b: bool) (r: tree) ->
    join2 {l} {r} return)
  )
  [ return (r:tree) ->
      { wf r && bst r && avl r }
      { forall y. mem y r <-> (mem y t && y<>x) }
      (! return {r}) ]