1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
|
use int.Int
use int.ComputerDivision
use coma.Std
let product (a b: int) {b >= 0} (return (c: int) {c = a * b}) =
loop
[ loop {p * q + r = a * b /\ q >= 0}
= if {q > 0} next (-> return {r})
[ next ->
if {mod q 2 = 1} (-> [&r <- r + p] step) step
[ step -> [&p <- p + p | &q <- div q 2] loop ] ] ]
[ &p: int = a | &q: int = b | &r: int = 0 ]
let product_pure (a b: int) {b >= 0} (return (c: int) {c = a * b}) =
loop {a} {b} {0}
[ loop (p q r: int) {p * q + r = a * b /\ q >= 0}
= if {q > 0} (-> if {mod q 2 = 1} (-> next {r+p}) (-> next {r})
[ next (s: int) -> loop {p+p} {div q 2} {s} ])
(-> return {r})
]
let product_inline (a b: int) {b >= 0} (return (c: int) {c = a * b}) =
loop {a} {b} {0}
[ loop (p q r: int) {p * q + r = a * b /\ q >= 0}
= if {q > 0} (-> if {mod q 2 = 1} (-> loop {p+p} {div q 2} {r+p})
(-> loop {p+p} {div q 2} {r}))
(-> return {r})
]
|