File: division.mlw

package info (click to toggle)
why3 1.8.2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 45,028 kB
  • sloc: xml: 185,443; ml: 111,224; ansic: 3,998; sh: 2,578; makefile: 2,568; java: 865; python: 720; javascript: 290; lisp: 205; pascal: 173
file content (82 lines) | stat: -rw-r--r-- 2,091 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

(** Euclidean division *)

module Division

  use int.Int
  use ref.Refint

  let division (a b: int) : int
    requires { 0 <= a && 0 < b }
    ensures  { exists r. result * b + r = a && 0 <= r < b }
  =
    let ref q = 0 in
    let ref r = a in
    while r >= b do
      invariant { q * b + r = a && 0 <= r }
      variant   { r }
      incr q;
      r -= b
    done;
    q

end

(** Euclidean division from Hoare's seminal paper
    "An Axiomatic Basis for Computer Programming"
    (Communications of the ACM 12(10), 1969).

    Hoare's proof of Euclidean division is performed under the nine
    axioms for arithmetic given below, which are all valid for several
    models of machine arithmetic (infinite arithmetic, strict
    interpretation, firm boundary, modulo arithmetic).

    Notes:
    - Axioms A2 and A4 (commutativity and associativity of multiplication)
      are actually not needed for the proof.
    - Hoare is not proving termination.
*)

module Hoare

  type integer

  val constant zero: integer
  val constant one: integer
  val function (+) (x y: integer) : integer
  val function (-) (x y: integer) : integer
  val function (*) (x y: integer) : integer
  val predicate (<=) (x y: integer)

  axiom A1: forall x y. x + y = y + x
  axiom A2: forall x y. x * y = y * x
  axiom A3: forall x y z. (x + y) + z = x + (y + z)
  axiom A4: forall x y z. (x * y) * z = x * (y * z)
  axiom A5: forall x y z. x * (y + z) = x * y + x * z
  axiom A6: forall x y. y <= x -> (x - y) + y = x
  axiom A7: forall x. x + zero = x
  axiom A8: forall x. x * zero = zero
  axiom A9: forall x. x * one = x

  let division (x y: integer) : (q: integer, r: integer)
    ensures  { not (y <= r) }
    ensures  { x = r + y * q }
    diverges
  =
    let ref r = x in
    let ref q = zero in
    while y <= r do
      invariant { x = r + y * q }
      r <- r - y;
      q <- one + q
    done;
    q, r

end

module HoareSound
  use int.Int
  clone Hoare with type integer = int, val zero = zero,
    val one = one, val (+) = (+), val (-) = (-), val (*) = (*),
    val (<=) = (<=), lemma .
end