1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
|
(* Greatest common divisor, using the Euclidean algorithm *)
module EuclideanAlgorithm
use mach.int.Int
use number.Gcd
let rec euclid (u v: int) : int
variant { v }
requires { u >= 0 /\ v >= 0 }
ensures { result = gcd u v }
=
if v = 0 then
u
else
euclid v (u % v)
end
module EuclideanAlgorithmIterative
use mach.int.Int
use ref.Ref
use number.Gcd
let euclid (u0 v0: int) : int
requires { u0 >= 0 /\ v0 >= 0 }
ensures { result = gcd u0 v0 }
=
let ref u = u0 in
let ref v = v0 in
while v <> 0 do
invariant { u >= 0 /\ v >= 0 }
invariant { gcd u v = gcd u0 v0 }
variant { v }
let tmp = v in
v <- u % v;
u <- tmp
done;
u
end
module BinaryGcd
use mach.int.Int
use number.Parity
use number.Gcd
lemma even1: forall n: int. 0 <= n -> even n <-> n = 2 * div n 2
lemma odd1: forall n: int. 0 <= n -> not (even n) <-> n = 2 * div n 2 + 1
lemma div_nonneg: forall n: int. 0 <= n -> 0 <= div n 2
use number.Coprime
lemma gcd_even_even: forall u v: int. 0 <= v -> 0 <= u ->
gcd (2 * u) (2 * v) = 2 * gcd u v
lemma gcd_even_odd: forall u v: int. 0 <= v -> 0 <= u ->
gcd (2 * u) (2 * v + 1) = gcd u (2 * v + 1)
lemma gcd_even_odd2: forall u v: int. 0 <= v -> 0 <= u ->
even u -> odd v -> gcd u v = gcd (div u 2) v
lemma odd_odd_div2: forall u v: int. 0 <= v -> 0 <= u ->
div ((2*u+1) - (2*v+1)) 2 = u - v
let lemma gcd_odd_odd (u v: int)
requires { 0 <= v <= u }
ensures { gcd (2 * u + 1) (2 * v + 1) = gcd (u - v) (2 * v + 1) }
= assert { gcd (2 * u + 1) (2 * v + 1) =
gcd ((2*u+1) - 1*(2*v+1)) (2 * v + 1) }
lemma gcd_odd_odd2: forall u v: int. 0 <= v <= u ->
odd u -> odd v -> gcd u v = gcd (div (u - v) 2) v
let rec binary_gcd (u v: int) : int
variant { v, u }
requires { u >= 0 /\ v >= 0 }
ensures { result = gcd u v }
=
if v > u then binary_gcd v u else
if v = 0 then u else
if mod u 2 = 0 then
if mod v 2 = 0 then 2 * binary_gcd (u / 2) (v / 2)
else binary_gcd (u / 2) v
else
if mod v 2 = 0 then binary_gcd u (v / 2)
else binary_gcd ((u - v) / 2) v
end
(** With machine integers.
Note that we assume parameters u, v to be nonnegative.
Otherwise, for u = v = min_int, the gcd could not be represented. *)
(* does not work with extraction driver ocaml64
module EuclideanAlgorithm31
use mach.int.Int31
use number.Gcd
let rec euclid (u v: int31) : int31
variant { to_int v }
requires { u >= 0 /\ v >= 0 }
ensures { result = gcd u v }
=
if v = 0 then
u
else
euclid v (u % v)
end
*)
module EuclideanAlgorithm63
use mach.int.Int63
use number.Gcd
let rec euclid (u v: int63) : int63
variant { to_int v }
requires { u >= 0 /\ v >= 0 }
ensures { result = gcd u v }
=
if v = 0 then
u
else
euclid v (u % v)
end
|