File: gcd.mlw

package info (click to toggle)
why3 1.8.2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 45,028 kB
  • sloc: xml: 185,443; ml: 111,224; ansic: 3,998; sh: 2,578; makefile: 2,568; java: 865; python: 720; javascript: 290; lisp: 205; pascal: 173
file content (129 lines) | stat: -rw-r--r-- 2,987 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

(* Greatest common divisor, using the Euclidean algorithm *)

module EuclideanAlgorithm

  use mach.int.Int
  use number.Gcd

  let rec euclid (u v: int) : int
    variant  { v }
    requires { u >= 0 /\ v >= 0 }
    ensures  { result = gcd u v }
  =
    if v = 0 then
      u
    else
      euclid v (u % v)

end

module EuclideanAlgorithmIterative

  use mach.int.Int
  use ref.Ref
  use number.Gcd

  let euclid (u0 v0: int) : int
    requires { u0 >= 0 /\ v0 >= 0 }
    ensures  { result = gcd u0 v0 }
  =
    let ref u = u0 in
    let ref v = v0 in
    while v <> 0 do
      invariant { u >= 0 /\ v >= 0 }
      invariant { gcd u v = gcd u0 v0 }
      variant   { v }
      let tmp = v in
      v <- u % v;
      u <- tmp
    done;
    u

end

module BinaryGcd

  use mach.int.Int
  use number.Parity
  use number.Gcd

  lemma even1: forall n: int. 0 <= n -> even n <-> n = 2 * div n 2
  lemma odd1: forall n: int. 0 <= n -> not (even n) <-> n = 2 * div n 2 + 1
  lemma div_nonneg: forall n: int. 0 <= n -> 0 <= div n 2

  use number.Coprime

  lemma gcd_even_even: forall u v: int. 0 <= v -> 0 <= u ->
    gcd (2 * u) (2 * v) = 2 * gcd u v
  lemma gcd_even_odd: forall u v: int. 0 <= v -> 0 <= u ->
    gcd (2 * u) (2 * v + 1) = gcd u (2 * v + 1)
  lemma gcd_even_odd2: forall u v: int. 0 <= v -> 0 <= u ->
    even u -> odd v -> gcd u v = gcd (div u 2) v
  lemma odd_odd_div2: forall u v: int. 0 <= v -> 0 <= u ->
    div ((2*u+1) - (2*v+1)) 2 = u - v

  let lemma gcd_odd_odd (u v: int)
    requires { 0 <= v <= u }
    ensures { gcd (2 * u + 1) (2 * v + 1) = gcd (u - v) (2 * v + 1) }
  = assert { gcd (2 * u + 1) (2 * v + 1) =
             gcd ((2*u+1) - 1*(2*v+1)) (2 * v + 1) }

  lemma gcd_odd_odd2: forall u v: int. 0 <= v <= u ->
    odd u -> odd v -> gcd u v = gcd (div (u - v) 2) v

  let rec binary_gcd (u v: int) : int
    variant  { v, u }
    requires { u >= 0 /\ v >= 0 }
    ensures  { result = gcd u v }
  =
    if v > u then binary_gcd v u else
    if v = 0 then u else
    if mod u 2 = 0 then
      if mod v 2 = 0 then 2 * binary_gcd (u / 2) (v / 2)
                     else binary_gcd (u / 2) v
      else
      if mod v 2 = 0 then binary_gcd u (v / 2)
                     else binary_gcd ((u - v) / 2) v

end

(** With machine integers.
    Note that we assume parameters u, v to be nonnegative.
    Otherwise, for u = v = min_int, the gcd could not be represented. *)

(* does not work with extraction driver ocaml64
module EuclideanAlgorithm31

  use mach.int.Int31
  use number.Gcd

  let rec euclid (u v: int31) : int31
    variant  { to_int v }
    requires { u >= 0 /\ v >= 0 }
    ensures  { result = gcd u v }
  =
    if v = 0 then
      u
    else
      euclid v (u % v)

end
*)

module EuclideanAlgorithm63

  use mach.int.Int63
  use number.Gcd

  let rec euclid (u v: int63) : int63
    variant  { to_int v }
    requires { u >= 0 /\ v >= 0 }
    ensures  { result = gcd u v }
  =
    if v = 0 then
      u
    else
      euclid v (u % v)

end