File: maximum_subarray.mlw

package info (click to toggle)
why3 1.8.2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 45,028 kB
  • sloc: xml: 185,443; ml: 111,224; ansic: 3,998; sh: 2,578; makefile: 2,568; java: 865; python: 720; javascript: 290; lisp: 205; pascal: 173
file content (374 lines) | stat: -rw-r--r-- 12,003 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374

(** Maximum subarray problem

   Given an array of integers, find the contiguous subarray with the
   largest sum. Subarrays of length 0 are allowed (which means that an
   array with negative values only has a maximal sum of 0).

   Authors: Jean-Christophe Filliâtre (CNRS)
            Guillaume Melquiond       (Inria)
            Andrei Paskevich          (U-PSUD)
*)

module Spec
  use int.Int
  use export array.Array

  use export array.ArraySum
  (* provides [sum a l h] = the sum of a[l..h[ and suitable lemmas *)

  (* s is no smaller than sums of subarrays a[l..h[ with 0 <= l < maxlo *)
  predicate maxsublo (a: array int) (maxlo: int) (s: int) =
    forall l h. 0 <= l < maxlo -> l <= h <= length a -> sum a l h <= s

  (* s is no smaller than sums of subarrays of a *)
  predicate maxsub (a: array int) (s: int) =
    forall l h. 0 <= l <= h <= length a -> sum a l h <= s

end

(** In all codes below, reference ms stands for the maximal sum found so far
   and ghost references lo and hi hold the bounds for this sum *)

(** Naive solution, in O(N^3) *)
module Algo1

  use int.Int
  use ref.Refint
  use Spec

  let maximum_subarray (a: array int) (ghost ref lo hi: int): int
    ensures { 0 <= lo <= hi <= length a && result = sum a lo hi }
    ensures { maxsub a result }
  = lo <- 0;
    hi <- 0;
    let n = length a in
    let ref ms = 0 in
    for l = 0 to n-1 do
      invariant { 0 <= lo <= l && lo <= hi <= n && ms = sum a lo hi }
      invariant { maxsublo a l ms }
      for h = l to n do
        invariant { 0 <= lo <= l && lo <= hi <= n && ms = sum a lo hi }
        invariant { maxsublo a l ms }
        invariant { forall h'. l <= h' < h -> sum a l h' <= ms }
        (* compute the sum of a[l..h[ *)
        let ref s = 0 in
        for i = l to h-1 do
          invariant { s = sum a l i }
          invariant { 0 <= lo <= l && lo <= hi <= n && ms = sum a lo hi }
          s += a[i]
        done;
        assert { s = sum a l h };
        if s > ms then begin ms <- s; lo <- l; hi <- h end
      done
    done;
    ms

end

(** Slightly less naive solution, in O(N^2)
   Do not recompute the sum, simply update it *)

module Algo2

  use int.Int
  use ref.Refint
  use Spec

  let maximum_subarray (a: array int) (ghost ref lo hi: int): int
    ensures { 0 <= lo <= hi <= length a && result = sum a lo hi }
    ensures { maxsub a result }
  = lo <- 0;
    hi <- 0;
    let n = length a in
    let ref ms = 0 in
    for l = 0 to n-1 do
      invariant { 0 <= lo <= l && lo <= hi <= n && 0 <= ms = sum a lo hi }
      invariant { maxsublo a l ms }
      let ref s = 0 in
      for h = l+1 to n do
        invariant
                { 0 <= lo <= l && lo <= hi <= n && 0 <= ms = sum a lo hi }
        invariant { maxsublo a l ms }
        invariant { forall h'. l <= h' < h -> sum a l h' <= ms }
        invariant { s = sum a l (h-1) }
        s += a[h-1]; (* update the sum *)
        assert { s = sum a l h };
        if s > ms then begin ms <- s; lo <- l; hi <- h end
      done
    done;
    ms

end

(** Divide-and-conqueer solution, in O(N log N) *)

module Algo3

  use int.Int
  use ref.Refint
  use int.ComputerDivision
  use Spec

  let rec maximum_subarray_rec (a: array int) (l h: int) (ghost ref lo hi: int)
    : int
    requires { 0 <= l <= h <= length a }
    ensures  { l <= lo <= hi <= h && result = sum a lo hi }
    ensures  { forall l' h'. l <= l' <= h' <= h -> sum a l' h' <= result }
    variant  { h - l }
  = if h = l then begin
      (* base case: no element at all *)
      lo <- l; hi <- h; 0
    end else begin
      (* at least one element *)
      let mid = l + div (h - l) 2 in
      (* first consider all sums that include a[mid] *)
      lo <- mid; hi <- mid;
      let ref ms = 0 in
      let ref s  = ms in
      for i = mid-1 downto l do
        invariant { l <= lo <= mid = hi && ms = sum a lo hi }
        invariant { forall l'. i < l' <= mid -> sum a l' mid <= ms }
        invariant { s = sum a (i+1) mid }
        s += a[i];
        assert { s = sum a i mid };
        if s > ms then begin ms <- s; lo <- i end
      done;
      assert { forall l'. l <= l' <= mid ->
               sum a l' mid <= sum a lo mid };
      s <- ms;
      for i = mid to h-1 do
        invariant { l <= lo <= mid <= hi <= h && ms = sum a lo hi }
        invariant { forall l' h'. l <= l' <= mid <= h' <= i ->
                    sum a l' h' <= ms }
        invariant { s = sum a lo i }
        s += a[i];
        assert { s = sum a lo (i+1) };
        assert { s = sum a lo mid + sum a mid (i+1) };
        if s > ms then begin ms <- s; hi <- (i+1) end
      done;
      (* then consider sums in a[l..mid[ and a[mid+1..h[, recursively *)
      begin
         let ghost ref lo' = 0 in
         let ghost ref hi' = 0 in
         let left = maximum_subarray_rec a l mid lo' hi' in
         if left > ms then begin ms <- left; lo <- lo'; hi <- hi' end
      end;
      begin
         let ghost ref lo' = 0 in
         let ghost ref hi' = 0 in
         let right = maximum_subarray_rec a (mid+1) h lo' hi' in
         if right > ms then begin ms <- right; lo <- lo'; hi <- hi' end
      end;
      ms
    end

 let maximum_subarray (a: array int) (ghost ref lo hi: int): int
    ensures { 0 <= lo <= hi <= length a && result = sum a lo hi }
    ensures { maxsub a result }
  = maximum_subarray_rec a 0 (length a) lo hi

end

(** Optimal solution, in O(N)
    Known as Kadane's algorithm

    The key idea is to maintain, in addition to the best sum found so far,
    the best sum that ends at the current point.

                                     i
     [ 1 | 7 | -3 | 4 | -7 | 1 | 2 | ...
      <-------------->             |
    max sum so far is 9     <----->
                    max sum ending at i is 3

    Then, for each new value a[i], we
    1. update the sum ending at i (in particular, setting it to 0 if a[i]<0);
    2. update the maximal sum.
*)

module Algo4

  use int.Int
  use ref.Refint
  use Spec

  let maximum_subarray (a: array int) (ghost ref lo hi: int): int
    ensures { 0 <= lo <= hi <= length a && result = sum a lo hi }
    ensures { maxsub a result }
  = lo <- 0;
    hi <- 0;
    let n = length a in
    let ref ms = 0 in
    let ghost ref l = 0 in
    let ref s = 0 in
    for i = 0 to n-1 do
      invariant { 0 <= lo <= hi <= i && 0 <= ms = sum a lo hi }
      invariant { forall l' h'. 0 <= l' <= h' <= i -> sum a l' h' <= ms }
      invariant { 0 <= l <= i && s = sum a l i }
      invariant { forall l'. 0 <= l' < i -> sum a l' i <= s }
      if s < 0 then begin s <- a[i]; l <- i end else s += a[i];
      if s > ms then begin ms <- s; lo <- l; hi <- (i+1) end
    done;
    ms

end

(** A slightly different implementation of Kadane's algorithm *)

module Algo5

  use int.Int
  use ref.Refint
  use export array.Array
  use export array.ArraySum

(*
    [| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |]
     ......|###### maxsum #######|..............
     ............................. |## curmax ##
*)

  let maximum_subarray (a: array int): int
    ensures { forall l h. 0 <= l <= h <= length a -> sum a l h <= result }
    ensures { exists l h. 0 <= l <= h <= length a /\ sum a l h  = result }
  =
    let ref maxsum = 0 in
    let ref curmax = 0 in
    let ghost ref lo = 0 in
    let ghost ref hi = 0 in
    let ghost ref cl = 0 in
    for i = 0 to a.length - 1 do
      invariant { forall l. 0 <= l <= i -> sum a l i <= curmax }
      invariant { 0 <= cl <= i /\ sum a cl i  = curmax }
      invariant { forall l h. 0 <= l <= h <= i -> sum a l h <= maxsum }
      invariant { 0 <= lo <= hi <= i /\ sum a lo hi = maxsum }
      curmax += a[i];
      if curmax < 0 then begin curmax <- 0; cl <- i+1 end;
      if curmax > maxsum then begin maxsum <- curmax; lo <- cl; hi <- i+1 end
    done;
    maxsum

end

(** Kadane's algorithm with 63-bit integers

   Interestingly, we only have to require all sums to be no greater
   than max_int.  There is no need to require the sums to be no
   smaller than min_int, since whenever the sum becomes negative it is
   replaced by the next element. *)

module BoundedIntegers

  use int.Int
  use mach.int.Int63
  use mach.int.Refint63
  use seq.Seq
  use mach.array.Array63
  use int.Sum

  function sum (a: array int63) (lo hi: int) : int =
    Sum.sum (fun i -> (a[i] : int)) lo hi

  let maximum_subarray (a: array int63) (ghost ref lo hi: int): int63
    requires { [@no overflow] forall l h. 0 <= l <= h <= length a ->
               sum a l h <= max_int }
    ensures { 0 <= lo <= hi <= length a && result  = sum a lo hi }
    ensures { forall l h. 0 <= l <= h <= length a -> result >= sum a lo hi }
  = lo <- 0;
    hi <- 0;
    let n = length a in
    let ref ms = zero in
    let ghost ref l = 0 in
    let ref s = zero in
    let ref i = zero in
    while i < n do
      invariant { 0 <= lo <= hi <= i <= n && 0 <= ms = sum a lo hi }
      invariant { forall l' h'. 0 <= l' <= h' <= i -> sum a l' h' <= ms }
      invariant { 0 <= l <= i && s = sum a l i }
      invariant { forall l'. 0 <= l' < i -> sum a l' i <= s }
      variant   { n - i }
      if s < zero then begin s <- a[i]; l <- to_int i end
      else begin assert { sum a l (i + 1) <= max_int }; s += a[i] end;
      if s > ms then begin
        ms <- s; lo <- l; hi <- to_int i + 1 end;
      incr i
    done;
    ms

end

(** Variant where we seek for the maximal product instead of the
   maximal sum.

   This is an exercise in Jeff Erickson's book "Algorithms", and the
   author reports that most solutions he could find online were
   incorrect. Indeed, this happens to be subtle to get right.

   The idea is to maintain *two* maximal products ending at position i,
   one positive and one negative.

             maximum so far is 10
             <---->                          i
    3   0    5    2    -1    2    4    1  |  ...
                             <---------->
                       maximum positive product so far is 6
             <-------------------------->
             maximum negative product so far is -60

*)

module MaxProd

  use int.Int
  use ref.Refint
  use export array.Array

  (** the product of a[lo..hi[ *)
  let rec function prod (a: array int) (lo hi: int) : int
    requires { 0 <= lo <= hi <= length a }
    variant  { hi-lo }
  = if lo = hi then 1 else prod a lo (hi-1) * a[hi-1]

  let maximum_subarray (a: array int): int
    ensures { forall l h. 0 <= l <= h <= length a -> prod a l h <= result }
    ensures { exists l h. 0 <= l <= h <= length a /\ prod a l h  = result }
  =
    let ref maxprd = 1 in
    let ref curmaxp = 1 in
    let ref curmaxn = 0 in
    let ghost ref lo = 0 in
    let ghost ref hi = 0 in
    let ghost ref clp = 0 in
    let ghost ref cln = 0 in
    for i = 0 to a.length - 1 do
      invariant { 0 <= clp <= i /\ prod a clp i = curmaxp >= 1 }
      invariant { forall l. 0 <= l <= i -> 0 <= prod a l i ->
                    prod a l i <= curmaxp }
      invariant { curmaxn <= 0 }
      invariant { curmaxn < 0 -> 0 <= cln <= i /\ prod a cln i = curmaxn < 0 }
      invariant { curmaxn < 0 -> forall l. 0 <= l <= i -> prod a l i < 0 ->
                    curmaxn <= prod a l i }
      invariant { curmaxn = 0 -> forall l. 0 <= l <= i -> prod a l i >= 0 }
      invariant { forall l h. 0 <= l <= h <= i -> prod a l h <= maxprd }
      invariant { 0 <= lo <= hi <= i /\ prod a lo hi = maxprd >= 1 }
      if a[i] = 0 then (
        curmaxp <- 1; clp <- i+1; curmaxn <- 0; cln <- i+1 )
      else if a[i] > 0 then (
        curmaxp <- curmaxp * a[i];
        curmaxn <- curmaxn * a[i]; )
      else (* a[i] < 0 *)
        if curmaxn < 0 then (
          curmaxp, curmaxn <- curmaxn * a[i], curmaxp * a[i];
          clp, cln <- cln, clp )
        else ( (* curmaxn = 0 i.e. no negative product *)
          curmaxp, curmaxn <- 1, curmaxp * a[i];
          clp, cln <- i+1, clp; )
      ;
      if curmaxp > maxprd then (
        maxprd <- curmaxp; lo <- clp; hi <- i+1
      )
    done;
    maxprd

end