File: mergesort_array.mlw

package info (click to toggle)
why3 1.8.2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 45,028 kB
  • sloc: xml: 185,443; ml: 111,224; ansic: 3,998; sh: 2,578; makefile: 2,568; java: 865; python: 720; javascript: 290; lisp: 205; pascal: 173
file content (307 lines) | stat: -rw-r--r-- 9,973 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307

(** {1 Sorting arrays using mergesort}

    Author: Jean-Christophe Filliâtre (CNRS)
*)

(** {2 Parameters} *)

module Elt

  use export int.Int
  use export array.Array

  type elt

  val predicate le elt elt

  clone relations.TotalPreOrder with
    type t = elt, predicate rel = le, axiom .

  clone export array.Sorted with type
    elt = elt, predicate le = le, axiom .

end

(** {2 Merging}

    It is well-known than merging sub-arrays in-place is extremely difficult
    (we don't even know how to do it in linear time).
    So we use some extra storage i.e. we merge two segments of a first array
    into a second array. *)

module Merge

  clone export Elt with axiom .
  use export ref.Refint
  use export array.Array
  use map.Occ
  use export array.ArrayPermut

  (* merges tmp[l..m[ and tmp[m..r[ into a[l..r[ *)
  let merge (tmp a: array elt) (l m r: int) : unit
    requires { 0 <= l <= m <= r <= length tmp = length a }
    requires { sorted_sub tmp l m }
    requires { sorted_sub tmp m r }
    ensures  { sorted_sub a l r }
    ensures  { permut tmp a l r }
    ensures  { forall i: int.
               (0 <= i < l \/ r <= i < length a) -> a[i] = (old a)[i] }
  = let i = ref l in
    let j = ref m in
    for k = l to r-1 do
      invariant { l <= !i <= m <= !j <= r }
      invariant { !i - l + !j - m = k - l }
      invariant { sorted_sub a l k }
      invariant { forall x y: int. l <= x < k -> !i <= y < m -> le a[x] tmp[y] }
      invariant { forall x y: int. l <= x < k -> !j <= y < r -> le a[x] tmp[y] }
      invariant { forall v: elt.
                  occ v tmp.elts l !i + occ v tmp.elts m !j = occ v a.elts l k }
      invariant { forall i: int.
                  (0 <= i < l \/ r <= i < length a) -> a[i] = (old a)[i] }
      if !i < m && (!j = r || le tmp[!i] tmp[!j]) then begin
        a[k] <- tmp[!i];
        incr i
      end else begin
        a[k] <- tmp[!j];
        incr j
      end
    done

  (* merges a[l..m[ and a[m..r[ into a[l..r[, using tmp as a temporary *)
  let merge_using (tmp a: array elt) (l m r: int) : unit
    requires { 0 <= l <= m <= r <= length tmp = length a }
    requires { sorted_sub a l m }
    requires { sorted_sub a m r }
    ensures  { sorted_sub a l r }
    ensures  { permut (old a) a l r }
    ensures  { forall i: int.
               (0 <= i < l \/ r <= i < length a) -> a[i] = (old a)[i] }
  = if l < m && m < r then (* both sides are non empty *)
      if le a[m-1] a[m] then (* OPTIM: already sorted *)
        assert { forall i1 i2: int. l <= i1 < m -> m <= i2 < r ->
                 le a[i1] a[m-1] && le a[m] a[i2] }
      else begin
        label N in
        blit a l tmp l (r - l);
        merge tmp a l m r;
        assert { permut_sub (a at N) a l r }
      end

end

(** {2 Top-down, recursive mergesort}

    Split in equal halves, recursively sort the two, and then merge. *)

module TopDownMergesort

  clone Merge with axiom .
  use mach.int.Int

  let rec mergesort_rec (a tmp: array elt) (l r: int) : unit
    requires { 0 <= l <= r <= length a = length tmp }
    ensures { sorted_sub a l r }
    ensures { permut_sub (old a) a l r }
    variant { r - l }
  = if l >= r-1 then return;
    let m = l + (r - l) / 2 in
    assert { l <= m < r };
    mergesort_rec a tmp l m;
    assert { permut_sub (old a) a l r };
    label M in
    mergesort_rec a tmp m r;
    assert { permut_sub (a at M) a l r };
    merge_using tmp a l m r

  let mergesort (a: array elt) : unit
    ensures { sorted a }
    ensures { permut_all (old a) a }
  =
    let tmp = Array.copy a in
    mergesort_rec a tmp 0 (length a)

end

(** {2 Bottom-up, iterative mergesort}

    First sort segments of length 1, then of length 2, then of length 4, etc.
    until the array is sorted.

    Surprisingly, the proof is much more complex than for natural mergesort
    (see below). *)

module BottomUpMergesort

  clone Merge with axiom .
  use mach.int.Int
  use int.MinMax

  let bottom_up_mergesort (a: array elt) : unit
    ensures { sorted a }
    ensures { permut_all (old a) a }
  = let n = length a in
    let tmp = Array.copy a in
    let len = ref 1 in
    while !len < n do
      invariant { 1 <= !len }
      invariant { permut_all (old a) a }
      invariant { forall k: int. let l = k * !len in
                  0 <= l < n -> sorted_sub a l (min n (l + !len)) }
      variant   { 2 * n - !len }
      label L in
      let lo = ref 0 in
      let ghost i = ref 0 in
      while !lo < n - !len do
        invariant { 0 <= !lo /\ !lo = 2 * !i * !len }
        invariant { permut_all (a at L) a }
        invariant { forall k: int. let l = k * !len in
                    !lo <= l < n -> sorted_sub a l (min n (l + !len)) }
        invariant { forall k: int. let l = k * (2 * !len) in
                    0 <= l < !lo -> sorted_sub a l (min n (l + 2 * !len)) }
        variant   { n + !len - !lo }
        let mid = !lo + !len in
        assert { mid = (2 * !i + 1) * !len };
        assert { sorted_sub a !lo (min n (!lo + !len)) };
        let hi = min n (mid + !len) in
        assert { sorted_sub a mid (min n (mid + !len)) };
        label M in
        merge_using tmp a !lo mid hi;
        assert { permut_sub (a at M) a !lo hi };
        assert { permut_all (a at M) a };
        assert { hi = min n (!lo + 2 * !len) };
        assert { sorted_sub a !lo (min n (!lo + 2 * !len)) };
        assert { forall k: int. let l = k * !len in mid + !len <= l < n ->
                   sorted_sub (a at M) l (min n (l + !len)) &&
                   sorted_sub a        l (min n (l + !len)) };
        assert { forall k: int. let l = k * (2 * !len) in 0 <= l < mid + !len ->
                   k <= !i &&
                   (k < !i ->
                     min n (l + 2 * !len) <= !lo &&
                     sorted_sub (a at M) l (min n (l + 2 * !len)) &&
                     sorted_sub a        l (min n (l + 2 * !len)) )
                   &&
                   (k = !i ->
                     l = !lo /\ sorted_sub a l (min n (l + 2 * !len)))
               };
        lo := mid + !len;
        ghost incr i
      done;
      assert { forall k: int. let l = k * (2 * !len) in 0 <= l < n ->
               l = (k * 2) * !len &&
               (l < !lo ->
                 sorted_sub a l (min n (l + 2 * !len))) &&
               (l >= !lo ->
                 sorted_sub a l (min n (l + !len)) &&
                 min n (l + 2 * !len) = min n (l + !len) = n &&
                 sorted_sub a l (min n (l + 2 * !len))) };
      len := 2 * !len;
    done;
    assert { sorted_sub a (0 * !len) (min n (0 + !len)) }

end

(** {2 Natural mergesort}

    This is a mere variant of bottom-up mergesort above, where
    we start with ascending runs (i.e. segments that are already sorted)
    instead of starting with single elements. *)

module NaturalMergesort

  clone Merge with axiom .
  use mach.int.Int
  use int.MinMax

  (* returns the maximal hi such that a[lo..hi[ is sorted *)
  let find_run (a: array elt) (lo: int) : int
    requires { 0 <= lo < length a }
    ensures  { lo < result <= length a }
    ensures  { sorted_sub a lo result }
    ensures  { result < length a -> not (le a[result-1] a[result]) }
  =
    let i = ref (lo + 1) in
    while !i < length a && le a[!i - 1] a[!i] do
      invariant { lo < !i <= length a }
      invariant { sorted_sub a lo !i }
      variant   { length a - !i }
      incr i
    done;
    !i

  let natural_mergesort (a: array elt) : unit
    ensures { sorted a }
    ensures { permut_all (old a) a }
  = let n = length a in
    if n <= 1 then return;
    let tmp = Array.copy a in
    let ghost first_run = ref 0 in
    while true do
      invariant { 0 <= !first_run <= n && sorted_sub a 0 !first_run }
      invariant { permut_all (old a) a }
      variant   { n - !first_run }
      label L in
      let lo = ref 0 in
      while !lo < n - 1 do
        invariant { 0 <= !lo <= n }
        invariant { !first_run at L <= !first_run <= n }
        invariant { sorted_sub a 0 !first_run }
        invariant { !lo = 0 \/ !lo >= !first_run > !first_run at L }
        invariant { permut_all (a at L) a }
        variant   { n - !lo }
        let mid = find_run a !lo in
        if mid = n then begin if !lo = 0 then return; break end;
        let hi = find_run a mid in
        label M in
        merge_using tmp a !lo mid hi;
        assert { permut_sub (a at M) a !lo hi };
        assert { permut_all (a at M) a };
        ghost if !lo = 0 then first_run := hi;
        lo := hi;
      done
    done


  (** an alternative implementation suggested by Martin Clochard,
      mixing top-down recursive and natural mergesort

      the purpose is to avoid unnecessary calls to [find_run] in
      the code above *)

  let rec naturalrec (tmp a: array elt) (lo k: int) : int
    requires { 0 <= lo <= length a = length tmp }
    requires { 0 <= k }
    ensures  { result = length a \/ lo + k < result < length a }
    ensures  { sorted_sub a lo result }
    ensures  { permut_sub (old a) a lo (length a) }
    ensures  { forall j: int. 0 <= j < lo -> a[j] = (old a)[j] }
    variant  { k }
  = let n = length a in
    if lo >= n-1 then return n;
    let mid = ref (find_run a lo) in
    if !mid = n then return n;
    for i = 0 to k-1 do
      invariant { lo + i < !mid < n }
      invariant { sorted_sub a lo !mid }
      invariant { permut_sub (old a) a lo (length a) }
      invariant { forall j: int. 0 <= j < lo -> a[j] = (old a)[j] }
      let hi = naturalrec tmp a !mid i in
      assert { permut_sub (old a) a lo (length a) };
      label M in
      merge_using tmp a lo !mid hi;
      assert { permut_sub (a at M) a lo hi };
      assert { permut_sub (a at M) a lo (length a) };
      mid := hi;
      if !mid = n then return n
    done;
    !mid

  let natural_mergesort2 (a: array elt) : unit
    ensures { sorted a }
    ensures { permut_all (old a) a }
  =
    let tmp = Array.copy a in
    let _ = naturalrec tmp a 0 (length a) in
    ()

end