1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
|
(** {1 Sorting arrays using mergesort}
Author: Jean-Christophe Filliâtre (CNRS)
*)
(** {2 Parameters} *)
module Elt
use export int.Int
use export array.Array
type elt
val predicate le elt elt
clone relations.TotalPreOrder with
type t = elt, predicate rel = le, axiom .
clone export array.Sorted with type
elt = elt, predicate le = le, axiom .
end
(** {2 Merging}
It is well-known than merging sub-arrays in-place is extremely difficult
(we don't even know how to do it in linear time).
So we use some extra storage i.e. we merge two segments of a first array
into a second array. *)
module Merge
clone export Elt with axiom .
use export ref.Refint
use export array.Array
use map.Occ
use export array.ArrayPermut
(* merges tmp[l..m[ and tmp[m..r[ into a[l..r[ *)
let merge (tmp a: array elt) (l m r: int) : unit
requires { 0 <= l <= m <= r <= length tmp = length a }
requires { sorted_sub tmp l m }
requires { sorted_sub tmp m r }
ensures { sorted_sub a l r }
ensures { permut tmp a l r }
ensures { forall i: int.
(0 <= i < l \/ r <= i < length a) -> a[i] = (old a)[i] }
= let i = ref l in
let j = ref m in
for k = l to r-1 do
invariant { l <= !i <= m <= !j <= r }
invariant { !i - l + !j - m = k - l }
invariant { sorted_sub a l k }
invariant { forall x y: int. l <= x < k -> !i <= y < m -> le a[x] tmp[y] }
invariant { forall x y: int. l <= x < k -> !j <= y < r -> le a[x] tmp[y] }
invariant { forall v: elt.
occ v tmp.elts l !i + occ v tmp.elts m !j = occ v a.elts l k }
invariant { forall i: int.
(0 <= i < l \/ r <= i < length a) -> a[i] = (old a)[i] }
if !i < m && (!j = r || le tmp[!i] tmp[!j]) then begin
a[k] <- tmp[!i];
incr i
end else begin
a[k] <- tmp[!j];
incr j
end
done
(* merges a[l..m[ and a[m..r[ into a[l..r[, using tmp as a temporary *)
let merge_using (tmp a: array elt) (l m r: int) : unit
requires { 0 <= l <= m <= r <= length tmp = length a }
requires { sorted_sub a l m }
requires { sorted_sub a m r }
ensures { sorted_sub a l r }
ensures { permut (old a) a l r }
ensures { forall i: int.
(0 <= i < l \/ r <= i < length a) -> a[i] = (old a)[i] }
= if l < m && m < r then (* both sides are non empty *)
if le a[m-1] a[m] then (* OPTIM: already sorted *)
assert { forall i1 i2: int. l <= i1 < m -> m <= i2 < r ->
le a[i1] a[m-1] && le a[m] a[i2] }
else begin
label N in
blit a l tmp l (r - l);
merge tmp a l m r;
assert { permut_sub (a at N) a l r }
end
end
(** {2 Top-down, recursive mergesort}
Split in equal halves, recursively sort the two, and then merge. *)
module TopDownMergesort
clone Merge with axiom .
use mach.int.Int
let rec mergesort_rec (a tmp: array elt) (l r: int) : unit
requires { 0 <= l <= r <= length a = length tmp }
ensures { sorted_sub a l r }
ensures { permut_sub (old a) a l r }
variant { r - l }
= if l >= r-1 then return;
let m = l + (r - l) / 2 in
assert { l <= m < r };
mergesort_rec a tmp l m;
assert { permut_sub (old a) a l r };
label M in
mergesort_rec a tmp m r;
assert { permut_sub (a at M) a l r };
merge_using tmp a l m r
let mergesort (a: array elt) : unit
ensures { sorted a }
ensures { permut_all (old a) a }
=
let tmp = Array.copy a in
mergesort_rec a tmp 0 (length a)
end
(** {2 Bottom-up, iterative mergesort}
First sort segments of length 1, then of length 2, then of length 4, etc.
until the array is sorted.
Surprisingly, the proof is much more complex than for natural mergesort
(see below). *)
module BottomUpMergesort
clone Merge with axiom .
use mach.int.Int
use int.MinMax
let bottom_up_mergesort (a: array elt) : unit
ensures { sorted a }
ensures { permut_all (old a) a }
= let n = length a in
let tmp = Array.copy a in
let len = ref 1 in
while !len < n do
invariant { 1 <= !len }
invariant { permut_all (old a) a }
invariant { forall k: int. let l = k * !len in
0 <= l < n -> sorted_sub a l (min n (l + !len)) }
variant { 2 * n - !len }
label L in
let lo = ref 0 in
let ghost i = ref 0 in
while !lo < n - !len do
invariant { 0 <= !lo /\ !lo = 2 * !i * !len }
invariant { permut_all (a at L) a }
invariant { forall k: int. let l = k * !len in
!lo <= l < n -> sorted_sub a l (min n (l + !len)) }
invariant { forall k: int. let l = k * (2 * !len) in
0 <= l < !lo -> sorted_sub a l (min n (l + 2 * !len)) }
variant { n + !len - !lo }
let mid = !lo + !len in
assert { mid = (2 * !i + 1) * !len };
assert { sorted_sub a !lo (min n (!lo + !len)) };
let hi = min n (mid + !len) in
assert { sorted_sub a mid (min n (mid + !len)) };
label M in
merge_using tmp a !lo mid hi;
assert { permut_sub (a at M) a !lo hi };
assert { permut_all (a at M) a };
assert { hi = min n (!lo + 2 * !len) };
assert { sorted_sub a !lo (min n (!lo + 2 * !len)) };
assert { forall k: int. let l = k * !len in mid + !len <= l < n ->
sorted_sub (a at M) l (min n (l + !len)) &&
sorted_sub a l (min n (l + !len)) };
assert { forall k: int. let l = k * (2 * !len) in 0 <= l < mid + !len ->
k <= !i &&
(k < !i ->
min n (l + 2 * !len) <= !lo &&
sorted_sub (a at M) l (min n (l + 2 * !len)) &&
sorted_sub a l (min n (l + 2 * !len)) )
&&
(k = !i ->
l = !lo /\ sorted_sub a l (min n (l + 2 * !len)))
};
lo := mid + !len;
ghost incr i
done;
assert { forall k: int. let l = k * (2 * !len) in 0 <= l < n ->
l = (k * 2) * !len &&
(l < !lo ->
sorted_sub a l (min n (l + 2 * !len))) &&
(l >= !lo ->
sorted_sub a l (min n (l + !len)) &&
min n (l + 2 * !len) = min n (l + !len) = n &&
sorted_sub a l (min n (l + 2 * !len))) };
len := 2 * !len;
done;
assert { sorted_sub a (0 * !len) (min n (0 + !len)) }
end
(** {2 Natural mergesort}
This is a mere variant of bottom-up mergesort above, where
we start with ascending runs (i.e. segments that are already sorted)
instead of starting with single elements. *)
module NaturalMergesort
clone Merge with axiom .
use mach.int.Int
use int.MinMax
(* returns the maximal hi such that a[lo..hi[ is sorted *)
let find_run (a: array elt) (lo: int) : int
requires { 0 <= lo < length a }
ensures { lo < result <= length a }
ensures { sorted_sub a lo result }
ensures { result < length a -> not (le a[result-1] a[result]) }
=
let i = ref (lo + 1) in
while !i < length a && le a[!i - 1] a[!i] do
invariant { lo < !i <= length a }
invariant { sorted_sub a lo !i }
variant { length a - !i }
incr i
done;
!i
let natural_mergesort (a: array elt) : unit
ensures { sorted a }
ensures { permut_all (old a) a }
= let n = length a in
if n <= 1 then return;
let tmp = Array.copy a in
let ghost first_run = ref 0 in
while true do
invariant { 0 <= !first_run <= n && sorted_sub a 0 !first_run }
invariant { permut_all (old a) a }
variant { n - !first_run }
label L in
let lo = ref 0 in
while !lo < n - 1 do
invariant { 0 <= !lo <= n }
invariant { !first_run at L <= !first_run <= n }
invariant { sorted_sub a 0 !first_run }
invariant { !lo = 0 \/ !lo >= !first_run > !first_run at L }
invariant { permut_all (a at L) a }
variant { n - !lo }
let mid = find_run a !lo in
if mid = n then begin if !lo = 0 then return; break end;
let hi = find_run a mid in
label M in
merge_using tmp a !lo mid hi;
assert { permut_sub (a at M) a !lo hi };
assert { permut_all (a at M) a };
ghost if !lo = 0 then first_run := hi;
lo := hi;
done
done
(** an alternative implementation suggested by Martin Clochard,
mixing top-down recursive and natural mergesort
the purpose is to avoid unnecessary calls to [find_run] in
the code above *)
let rec naturalrec (tmp a: array elt) (lo k: int) : int
requires { 0 <= lo <= length a = length tmp }
requires { 0 <= k }
ensures { result = length a \/ lo + k < result < length a }
ensures { sorted_sub a lo result }
ensures { permut_sub (old a) a lo (length a) }
ensures { forall j: int. 0 <= j < lo -> a[j] = (old a)[j] }
variant { k }
= let n = length a in
if lo >= n-1 then return n;
let mid = ref (find_run a lo) in
if !mid = n then return n;
for i = 0 to k-1 do
invariant { lo + i < !mid < n }
invariant { sorted_sub a lo !mid }
invariant { permut_sub (old a) a lo (length a) }
invariant { forall j: int. 0 <= j < lo -> a[j] = (old a)[j] }
let hi = naturalrec tmp a !mid i in
assert { permut_sub (old a) a lo (length a) };
label M in
merge_using tmp a lo !mid hi;
assert { permut_sub (a at M) a lo hi };
assert { permut_sub (a at M) a lo (length a) };
mid := hi;
if !mid = n then return n
done;
!mid
let natural_mergesort2 (a: array elt) : unit
ensures { sorted a }
ensures { permut_all (old a) a }
=
let tmp = Array.copy a in
let _ = naturalrec tmp a 0 (length a) in
()
end
|