File: mutual_recursion.mlw

package info (click to toggle)
why3 1.8.2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 45,028 kB
  • sloc: xml: 185,443; ml: 111,224; ansic: 3,998; sh: 2,578; makefile: 2,568; java: 865; python: 720; javascript: 290; lisp: 205; pascal: 173
file content (31 lines) | stat: -rw-r--r-- 758 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

(** Some examples of mutual recursion and corresponding proofs of
    termination *)

use int.Int

(** This example is from the book "Program Proofs" by Rustan Leino *)

let rec f1 (n: int) : int
  requires { 0 <= n }
  variant  { n, 1 }
= if n = 0 then 0 else f2 n + 1

with f2 (n: int) : int
  requires { 1 <= n }
  variant  { n, 0 }
= 2 * f1 (n - 1)

(** Hofstadter's Female and Male sequences *)

let rec function f (n: int) : int
  requires { 0 <= n }
  variant  { n, 1 }
  ensures  { if n = 0 then result = 1  else 1 <= result <= n }
= if n = 0 then 1 else n - m (f (n - 1))

with function m (n: int) : int
  requires { 0 <= n }
  variant  { n, 0 }
  ensures  { if n = 0 then result = 0 else 0 <= result < n }
= if n = 0 then 0 else n - f (m (n - 1))