1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
|
module ExpLogSingle
use real.RealInfix
use real.Abs
use real.ExpLog
use ufloat.USingle
use ufloat.USingleLemmas
constant log_error:real
axiom log_error_bounds : 0. <=. log_error <=. 1.
constant log_cst_error:real
axiom log_cst_error_bounds : 0. <=. log_cst_error <=. 1.
val function log_approx (x:usingle) : usingle
requires { 0. <. to_real x }
ensures {
abs (to_real result -. log (to_real x)) <=. abs (log (to_real x)) *. log_error +. log_cst_error
}
constant log2_error:real
axiom log2_error_bounds : 0. <=. log2_error <=. 1.
val function log2_approx (x:usingle) : usingle
requires { 0. <. to_real x }
ensures {
abs (to_real result -. log2 (to_real x)) <=. abs (log2 (to_real x)) *. log2_error
}
constant log10_error:real
axiom log10_error_bounds : 0. <=. log10_error <=. 1.
val function log10_approx (x:usingle) : usingle
requires { 0. <. to_real x }
ensures {
abs (to_real result -. log10 (to_real x)) <=. abs (log10 (to_real x)) *. log10_error
}
constant exp_error:real
axiom exp_error_bounds : 0. <=. exp_error <=. 0x1p-2
val function exp_approx (x:usingle) : usingle
ensures {
abs (to_real result -. exp (to_real x)) <=. exp_error *. exp (to_real x)
}
let example1 (x y : usingle)
ensures {
let t = log (exp (to_real y)) in
let t1 = log (exp (to_real x)) in
let t2 =
((1.0 +. eps) +. log_error)
*. (((-. log (1.0 -. exp_error)) *. (1.0 +. log_error))
+. log_cst_error)
in
abs (to_real result -. (t1 +. t))
<=. ((((log_error +. log_error) +. eps) *. (abs t1 +. abs t))
+. (t2 +. t2))
}
= log_approx (exp_approx(x)) ++. log_approx (exp_approx(y))
let example2 (x y : usingle)
ensures {
let exact = log(exp(to_real x) +. exp (to_real y)) in
abs (to_real result -. exact)
<=. abs exact *. log_error
+. ((-. log (1.0 -. ((2. *. exp_error) +. eps))) *. (1.0 +. log_error)) +. log_cst_error
}
= log_approx (exp_approx(x) ++. exp_approx(y))
let example3 (x y : usingle)
requires { 0. <. to_real x }
requires { 0. <. to_real y }
ensures {
let exact = log2(to_real x +. to_real y) in
abs (to_real result -. exact)
<=. abs exact *. log2_error
+. ((-. log2 (1.0 -. (eps))) *. (1.0 +. log2_error))
}
= log2_approx (x ++. y)
let example4 (x y : usingle)
requires { 0. <. to_real x }
requires { 0. <. to_real y }
ensures {
let exact = log10(to_real x +. to_real y) in
abs (to_real result -. exact)
<=. abs exact *. log10_error
+. ((-. log10 (1.0 -. (eps))) *. (1.0 +. log10_error))
}
= log10_approx (x ++. y)
end
module ExpLogDouble
use real.RealInfix
use real.Abs
use real.ExpLog
use ufloat.UDouble
use ufloat.UDoubleLemmas
constant log_error:real
axiom log_error_bounds : 0. <=. log_error <=. 1.
constant log_cst_error:real
axiom log_cst_error_bounds : 0. <=. log_cst_error <=. 1.
val function log_approx (x:udouble) : udouble
requires { 0. <. to_real x }
ensures {
abs (to_real result -. log (to_real x)) <=. abs (log (to_real x)) *. log_error +. log_cst_error
}
constant exp_error:real
axiom exp_error_bounds : 0. <=. exp_error <=. 0.5
val function exp_approx (x:udouble) : udouble
ensures {
abs (to_real result -. exp (to_real x)) <=. exp_error *. exp (to_real x)
}
let example1 (x y : udouble)
ensures {
let t = log (exp (to_real y)) in
let t1 = log (exp (to_real x)) in
let t2 =
((1.0 +. eps) +. log_error)
*. (((-. log (1.0 -. exp_error)) *. (1.0 +. log_error))
+. log_cst_error)
in
abs (to_real result -. (t1 +. t))
<=. ((((log_error +. log_error) +. eps) *. (abs t1 +. abs t))
+. (t2 +. t2))
}
= log_approx (exp_approx(x)) ++. log_approx (exp_approx(y))
let example2 (x y : udouble)
requires { exp_error <=. 0x1p-2 }
ensures {
let exact = log(exp(to_real x) +. exp (to_real y)) in
abs (to_real result -. exact)
<=. abs exact *. log_error
+. ((-. log (1.0 -. ((2. *. exp_error) +. eps))) *. (1.0 +. log_error)) +. log_cst_error
}
= log_approx (exp_approx(x) ++. exp_approx(y))
let lse4 (x1 x2 x3 x4 : udouble)
requires { exp_error <=. 0x1p-3 }
ensures {
let exact =
log (exp (to_real x1) +. exp (to_real x2) +.
exp (to_real x3) +. exp (to_real x4))
in
abs (to_real result -. exact)
<=. abs exact *. log_error
-. log (1.0 -. (4.0 *. exp_error +. 3.0 *. eps))
*. (1.0 +. log_error)
+. log_cst_error
}
= log_approx (exp_approx(x1) ++. exp_approx(x2) ++. exp_approx(x3) ++. exp_approx(x4))
let lse5 (x1 x2 x3 x4 x5: udouble)
requires { exp_error <=. 0x1p-3 }
ensures {
let exact =
log (exp (to_real x1) +. exp (to_real x2) +.
exp (to_real x3) +. exp (to_real x4) +. exp (to_real x5))
in
abs (to_real result -. exact)
<=. abs exact *. log_error
-. log (1.0 -. (5.0 *. exp_error +. 4.0 *. eps))
*. (1.0 +. log_error)
+. log_cst_error
}
= log_approx (exp_approx(x1) ++. exp_approx(x2) ++. exp_approx(x3)
++. exp_approx(x4) ++. exp_approx(x5))
let lse6 (x1 x2 x3 x4 x5 x6 : udouble)
requires { exp_error <=. 0x1p-3 }
ensures {
let exact =
log (exp (to_real x1) +. exp (to_real x2) +.
exp (to_real x3) +. exp (to_real x4) +. exp (to_real x5)
+. exp (to_real x6) )
in
abs (to_real result -. exact)
<=. abs exact *. log_error
-. log (1.0 -. (6.0 *. exp_error +. 5.0 *. eps))
*. (1.0 +. log_error)
+. log_cst_error
}
= log_approx (exp_approx(x1) ++. exp_approx(x2) ++. exp_approx(x3)
++. exp_approx(x4) ++. exp_approx(x5) ++.
exp_approx(x6))
let lse7 (x1 x2 x3 x4 x5 x6 x7 : udouble)
requires { exp_error <=. 0x1p-3 }
ensures {
let exact =
log (exp (to_real x1) +. exp (to_real x2) +.
exp (to_real x3) +. exp (to_real x4) +. exp (to_real x5)
+. exp (to_real x6) +. exp (to_real x7) )
in
abs (to_real result -. exact)
<=. abs exact *. log_error
-. log (1.0 -. (7.0 *. exp_error +. 6.0 *. eps))
*. (1.0 +. log_error)
+. log_cst_error
}
= log_approx (exp_approx(x1) ++. exp_approx(x2) ++. exp_approx(x3)
++. exp_approx(x4) ++. exp_approx(x5) ++.
exp_approx(x6) ++. exp_approx(x7))
let lse8 (x1 x2 x3 x4 x5 x6 x7 x8 : udouble)
requires { exp_error <=. 0x1p-4 }
ensures {
let exact =
log (exp (to_real x1) +. exp (to_real x2) +.
exp (to_real x3) +. exp (to_real x4) +. exp (to_real x5)
+. exp (to_real x6) +. exp (to_real x7) +.
exp (to_real x8) )
in
abs (to_real result -. exact)
<=. abs exact *. log_error
-. log (1.0 -. (8.0 *. exp_error +. 7.0 *. eps))
*. (1.0 +. log_error)
+. log_cst_error
}
= log_approx (exp_approx(x1) ++. exp_approx(x2) ++. exp_approx(x3)
++. exp_approx(x4) ++. exp_approx(x5) ++.
exp_approx(x6) ++. exp_approx(x7) ++. exp_approx(x8))
let lse10 (x1 x2 x3 x4 x5 x6 x7 x8 x9 x10: udouble)
requires { exp_error <=. 0x1p-4 }
ensures {
let exact =
log (exp (to_real x1) +. exp (to_real x2) +.
exp (to_real x3) +. exp (to_real x4) +. exp (to_real x5)
+. exp (to_real x6) +. exp (to_real x7) +.
exp (to_real x8) +. exp (to_real x9) +. exp (to_real x10))
in
abs (to_real result -. exact)
<=. abs exact *. log_error
-. log (1.0 -. (10.0 *. exp_error +. 9.0 *. eps))
*. (1.0 +. log_error)
+. log_cst_error
}
= let s = exp_approx(x1) ++. exp_approx(x2) ++. exp_approx(x3)
++. exp_approx(x4) ++. exp_approx(x5) ++.
exp_approx(x6) ++. exp_approx(x7) ++. exp_approx(x8)
++. exp_approx(x9) ++. exp_approx(x10) in
assert { to_real s >. 0.0 };
log_approx s
(** log in base 2 and 10 *)
constant log2_rel_error:real
axiom log2_rel_error_bounds : 0. <=. log2_rel_error <=. 1.
constant log2_abs_error:real
axiom log2_abs_error_bounds : 0. <=. log2_abs_error <=. 1.
val function log2_approx (x:udouble) : udouble
requires { 0. <. to_real x }
ensures {
abs (to_real result -. log2 (to_real x)) <=.
abs (log2 (to_real x)) *. log2_rel_error +. log2_abs_error
}
constant log10_error:real
axiom log10_error_bounds : 0. <=. log10_error <=. 1.
val function log10_approx (x:udouble) : udouble
requires { 0. <. to_real x }
ensures {
abs (to_real result -. log10 (to_real x)) <=. abs (log10 (to_real x)) *. log10_error
}
let example3 (x y : udouble)
requires { 0. <. to_real x }
requires { 0. <. to_real y }
ensures {
let exact = log2(to_real x +. to_real y) in
abs (to_real result -. exact)
<=. abs exact *. log2_rel_error
+. (-. log2 (1.0 -. (eps))) *. (1.0 +. log2_rel_error)
+. log2_abs_error
}
= log2_approx (x ++. y)
let example4 (x y : udouble)
requires { 0. <. to_real x }
requires { 0. <. to_real y }
ensures {
let exact = log10(to_real x +. to_real y) in
abs (to_real result -. exact)
<=. abs exact *. log10_error
+. ((-. log10 (1.0 -. (eps))) *. (1.0 +. log10_error))
}
= log10_approx (x ++. y)
(*** the following is to hard so far
val exact_cte (x:real) : udouble
ensures { to_real result = x }
let lemma exp_pos (x:real)
requires { x >=. 0.0}
ensures { exp x -. 1.0 >=. 0.0 }
= ()
let sl2se (a1 a2 rho: udouble)
requires { exp_error <. 0x1p-8 }
ensures {
let s11 = to_real a1 +. to_real rho -. to_real a1 in
let s12 = to_real a1 +. to_real rho -. to_real a2 in
let s21 = to_real a2 +. to_real rho -. to_real a1 in
let s22 = to_real a2 +. to_real rho -. to_real a2 in
let exact =
log2 (exp (-0.5 *. (s11 *. s11)) +. exp (-0.5 *. (s22 *. s12)))
+. log2 (exp (-0.5 *. (s21 *. s21)) +. exp (-0.5 *. (s22 *. s22)))
in
abs (to_real result -. exact)
<=. 0.0
}
=
let half = exact_cte (-0.5) in
let s11 = a1 ++. rho --. a1 in
let s12 = a1 ++. rho --. a2 in
let t11 = exp_approx(half**.(s11**.s11)) in
let t12 = exp_approx(half**.(s12**.s12)) in
let u1 = t11 ++. t12 in
let v1 = log2_approx u1 in
let s21 = a2 ++. rho --. a1 in
let s22 = a2 ++. rho --. a2 in
let t21 = exp_approx(half**.(s21**.s21)) in
let t22 = exp_approx(half**.(s22**.s22)) in
let u2 = t21 ++. t22 in
let v2 = log2_approx u2 in
v1 ++. v2
*)
end
|