File: exp_log.mlw

package info (click to toggle)
why3 1.8.2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 45,028 kB
  • sloc: xml: 185,443; ml: 111,224; ansic: 3,998; sh: 2,578; makefile: 2,568; java: 865; python: 720; javascript: 290; lisp: 205; pascal: 173
file content (334 lines) | stat: -rw-r--r-- 10,970 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
module ExpLogSingle
  use real.RealInfix
  use real.Abs
  use real.ExpLog
  use ufloat.USingle
  use ufloat.USingleLemmas

  constant log_error:real
  axiom log_error_bounds : 0. <=. log_error <=. 1.
  constant log_cst_error:real
  axiom log_cst_error_bounds : 0. <=. log_cst_error <=. 1.
  val function log_approx (x:usingle) : usingle
    requires { 0. <. to_real x }
    ensures {
      abs (to_real result -. log (to_real x)) <=. abs (log (to_real x)) *. log_error +. log_cst_error
    }

  constant log2_error:real
  axiom log2_error_bounds : 0. <=. log2_error <=. 1.
  val function log2_approx (x:usingle) : usingle
    requires { 0. <. to_real x }
    ensures {
      abs (to_real result -. log2 (to_real x)) <=. abs (log2 (to_real x)) *. log2_error
    }

  constant log10_error:real
  axiom log10_error_bounds : 0. <=. log10_error <=. 1.
  val function log10_approx (x:usingle) : usingle
    requires { 0. <. to_real x }
    ensures {
      abs (to_real result -. log10 (to_real x)) <=. abs (log10 (to_real x)) *. log10_error
    }

  constant exp_error:real
  axiom exp_error_bounds : 0. <=. exp_error <=. 0x1p-2
  val function exp_approx (x:usingle) : usingle
    ensures {
      abs (to_real result -. exp (to_real x)) <=. exp_error *. exp (to_real x)
    }

  let example1 (x y : usingle)
    ensures {
    let t = log (exp (to_real y)) in
    let t1 = log (exp (to_real x)) in
    let t2 =
      ((1.0 +. eps) +. log_error)
      *. (((-. log (1.0 -. exp_error)) *. (1.0 +. log_error))
          +. log_cst_error)
    in
    abs (to_real result -. (t1 +. t))
    <=. ((((log_error +. log_error) +. eps) *. (abs t1 +. abs t))
         +. (t2 +. t2))
    }
  = log_approx (exp_approx(x)) ++. log_approx (exp_approx(y))

  let example2 (x y : usingle)
    ensures {
      let exact = log(exp(to_real x) +. exp (to_real y)) in
      abs (to_real result -. exact)
      <=. abs exact *. log_error
         +. ((-. log (1.0 -. ((2. *. exp_error) +. eps))) *. (1.0 +. log_error)) +. log_cst_error
    }
  = log_approx (exp_approx(x) ++. exp_approx(y))

  let example3 (x y : usingle)
    requires { 0. <. to_real x }
    requires { 0. <. to_real y }
    ensures {
      let exact = log2(to_real x +. to_real y) in
      abs (to_real result -. exact)
      <=. abs exact *. log2_error
         +. ((-. log2 (1.0 -. (eps))) *. (1.0 +. log2_error))
    }
  = log2_approx (x ++. y)

  let example4 (x y : usingle)
    requires { 0. <. to_real x }
    requires { 0. <. to_real y }
    ensures {
      let exact = log10(to_real x +. to_real y) in
      abs (to_real result -. exact)
      <=. abs exact *. log10_error
         +. ((-. log10 (1.0 -. (eps))) *. (1.0 +. log10_error))
    }
  = log10_approx (x ++. y)

end

module ExpLogDouble
  use real.RealInfix
  use real.Abs
  use real.ExpLog
  use ufloat.UDouble
  use ufloat.UDoubleLemmas

  constant log_error:real
  axiom log_error_bounds : 0. <=. log_error <=. 1.
  constant log_cst_error:real
  axiom log_cst_error_bounds : 0. <=. log_cst_error <=. 1.
  val function log_approx (x:udouble) : udouble
    requires { 0. <. to_real x }
    ensures {
      abs (to_real result -. log (to_real x)) <=. abs (log (to_real x)) *. log_error +. log_cst_error
    }

  constant exp_error:real
  axiom exp_error_bounds : 0. <=. exp_error <=. 0.5
  val function exp_approx (x:udouble) : udouble
    ensures {
      abs (to_real result -. exp (to_real x)) <=. exp_error *. exp (to_real x)
    }

  let example1 (x y : udouble)
    ensures {
    let t = log (exp (to_real y)) in
    let t1 = log (exp (to_real x)) in
    let t2 =
      ((1.0 +. eps) +. log_error)
      *. (((-. log (1.0 -. exp_error)) *. (1.0 +. log_error))
          +. log_cst_error)
    in
    abs (to_real result -. (t1 +. t))
    <=. ((((log_error +. log_error) +. eps) *. (abs t1 +. abs t))
         +. (t2 +. t2))
    }
  = log_approx (exp_approx(x)) ++. log_approx (exp_approx(y))

  let example2 (x y : udouble)
    requires { exp_error <=. 0x1p-2 }
    ensures {
      let exact = log(exp(to_real x) +. exp (to_real y)) in
      abs (to_real result -. exact)
      <=. abs exact *. log_error
         +. ((-. log (1.0 -. ((2. *. exp_error) +. eps))) *. (1.0 +. log_error)) +. log_cst_error
    }
  = log_approx (exp_approx(x) ++. exp_approx(y))

  let lse4 (x1 x2 x3 x4 : udouble)
    requires { exp_error <=. 0x1p-3 }
    ensures {
      let exact =
        log (exp (to_real x1) +. exp (to_real x2) +.
             exp (to_real x3) +. exp (to_real x4))
      in
      abs (to_real result -. exact)
      <=. abs exact *. log_error
          -. log (1.0 -. (4.0 *. exp_error +. 3.0 *. eps))
             *. (1.0 +. log_error)
          +. log_cst_error
          }
  = log_approx (exp_approx(x1) ++. exp_approx(x2) ++. exp_approx(x3) ++. exp_approx(x4))

  let lse5 (x1 x2 x3 x4 x5: udouble)
    requires { exp_error <=. 0x1p-3 }
    ensures {
      let exact =
        log (exp (to_real x1) +. exp (to_real x2) +.
             exp (to_real x3) +. exp (to_real x4) +. exp (to_real x5))
      in
      abs (to_real result -. exact)
      <=. abs exact *. log_error
          -. log (1.0 -. (5.0 *. exp_error +. 4.0 *. eps))
             *. (1.0 +. log_error)
          +. log_cst_error
          }
  = log_approx (exp_approx(x1) ++. exp_approx(x2) ++. exp_approx(x3)
                ++. exp_approx(x4) ++. exp_approx(x5))

let lse6 (x1 x2 x3 x4 x5 x6 : udouble)
    requires { exp_error <=. 0x1p-3 }
    ensures {
      let exact =
        log (exp (to_real x1) +. exp (to_real x2) +.
             exp (to_real x3) +. exp (to_real x4) +. exp (to_real x5)
             +. exp (to_real x6) )
      in
      abs (to_real result -. exact)
      <=. abs exact *. log_error
          -. log (1.0 -. (6.0 *. exp_error +. 5.0 *. eps))
             *. (1.0 +. log_error)
          +. log_cst_error
          }
  = log_approx (exp_approx(x1) ++. exp_approx(x2) ++. exp_approx(x3)
                ++. exp_approx(x4) ++. exp_approx(x5) ++.
                exp_approx(x6))

let lse7 (x1 x2 x3 x4 x5 x6 x7 : udouble)
    requires { exp_error <=. 0x1p-3 }
    ensures {
      let exact =
        log (exp (to_real x1) +. exp (to_real x2) +.
             exp (to_real x3) +. exp (to_real x4) +. exp (to_real x5)
             +. exp (to_real x6) +. exp (to_real x7) )
      in
      abs (to_real result -. exact)
      <=. abs exact *. log_error
          -. log (1.0 -. (7.0 *. exp_error +. 6.0 *. eps))
             *. (1.0 +. log_error)
          +. log_cst_error
          }
  = log_approx (exp_approx(x1) ++. exp_approx(x2) ++. exp_approx(x3)
                ++. exp_approx(x4) ++. exp_approx(x5) ++.
                exp_approx(x6) ++. exp_approx(x7))


let lse8 (x1 x2 x3 x4 x5 x6 x7 x8 : udouble)
    requires { exp_error <=. 0x1p-4 }
    ensures {
      let exact =
        log (exp (to_real x1) +. exp (to_real x2) +.
             exp (to_real x3) +. exp (to_real x4) +. exp (to_real x5)
             +. exp (to_real x6) +. exp (to_real x7) +.
             exp (to_real x8) )
      in
      abs (to_real result -. exact)
      <=. abs exact *. log_error
          -. log (1.0 -. (8.0 *. exp_error +. 7.0 *. eps))
             *. (1.0 +. log_error)
          +. log_cst_error
          }
  = log_approx (exp_approx(x1) ++. exp_approx(x2) ++. exp_approx(x3)
                ++. exp_approx(x4) ++. exp_approx(x5) ++.
                exp_approx(x6) ++. exp_approx(x7) ++. exp_approx(x8))


  let lse10 (x1 x2 x3 x4 x5 x6 x7 x8 x9 x10: udouble)
    requires { exp_error <=. 0x1p-4 }
    ensures {
      let exact =
        log (exp (to_real x1) +. exp (to_real x2) +.
             exp (to_real x3) +. exp (to_real x4) +. exp (to_real x5)
             +. exp (to_real x6) +. exp (to_real x7) +.
             exp (to_real x8) +. exp (to_real x9) +. exp (to_real x10))
      in
      abs (to_real result -. exact)
      <=. abs exact *. log_error
          -. log (1.0 -. (10.0 *. exp_error +. 9.0 *. eps))
             *. (1.0 +. log_error)
          +. log_cst_error
          }
  = let s  = exp_approx(x1) ++. exp_approx(x2) ++. exp_approx(x3)
                ++. exp_approx(x4) ++. exp_approx(x5) ++.
                exp_approx(x6) ++. exp_approx(x7) ++. exp_approx(x8)
                ++. exp_approx(x9) ++. exp_approx(x10) in
    assert { to_real s >. 0.0 };
    log_approx s

  (** log in base 2 and 10 *)

  constant log2_rel_error:real
  axiom log2_rel_error_bounds : 0. <=. log2_rel_error <=. 1.
  constant log2_abs_error:real
  axiom log2_abs_error_bounds : 0. <=. log2_abs_error <=. 1.
  val function log2_approx (x:udouble) : udouble
    requires { 0. <. to_real x }
    ensures {
      abs (to_real result -. log2 (to_real x)) <=.
        abs (log2 (to_real x)) *. log2_rel_error +. log2_abs_error
    }

  constant log10_error:real
  axiom log10_error_bounds : 0. <=. log10_error <=. 1.
  val function log10_approx (x:udouble) : udouble
    requires { 0. <. to_real x }
    ensures {
      abs (to_real result -. log10 (to_real x)) <=. abs (log10 (to_real x)) *. log10_error
    }

  let example3 (x y : udouble)
    requires { 0. <. to_real x }
    requires { 0. <. to_real y }
    ensures {
      let exact = log2(to_real x +. to_real y) in
      abs (to_real result -. exact)
      <=. abs exact *. log2_rel_error
         +. (-. log2 (1.0 -. (eps))) *. (1.0 +. log2_rel_error)
         +. log2_abs_error
    }
  = log2_approx (x ++. y)

  let example4 (x y : udouble)
    requires { 0. <. to_real x }
    requires { 0. <. to_real y }
    ensures {
      let exact = log10(to_real x +. to_real y) in
      abs (to_real result -. exact)
      <=. abs exact *. log10_error
         +. ((-. log10 (1.0 -. (eps))) *. (1.0 +. log10_error))
    }
  = log10_approx (x ++. y)

(*** the following is to hard so far

  val exact_cte (x:real) : udouble
    ensures { to_real result = x }

  let lemma exp_pos (x:real)
    requires { x >=. 0.0}
    ensures { exp x -. 1.0 >=. 0.0 }
  = ()

  let sl2se (a1 a2 rho: udouble)
    requires { exp_error <. 0x1p-8 }
    ensures {
      let s11 = to_real a1 +. to_real rho -. to_real a1 in
      let s12 = to_real a1 +. to_real rho -. to_real a2 in
      let s21 = to_real a2 +. to_real rho -. to_real a1 in
      let s22 = to_real a2 +. to_real rho -. to_real a2 in
      let exact =
        log2 (exp (-0.5 *. (s11 *. s11)) +. exp (-0.5 *. (s22 *. s12)))
        +. log2 (exp (-0.5 *. (s21 *. s21)) +. exp (-0.5 *. (s22 *. s22)))
      in
      abs (to_real result -. exact)
      <=. 0.0
          }
  =
    let half = exact_cte (-0.5) in
    let s11 = a1 ++. rho --. a1 in
    let s12 = a1 ++. rho --. a2 in
    let t11 = exp_approx(half**.(s11**.s11)) in
    let t12 = exp_approx(half**.(s12**.s12)) in
    let u1 = t11 ++. t12 in
    let v1 = log2_approx u1 in
    let s21 = a2 ++. rho --. a1 in
    let s22 = a2 ++. rho --. a2 in
    let t21 = exp_approx(half**.(s21**.s21)) in
    let t22 = exp_approx(half**.(s22**.s22)) in
    let u2 = t21 ++. t22 in
    let v2 = log2_approx u2 in
    v1 ++. v2

*)

end