1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
|
(* BactrackArray.mlw :
provide support for a backtracking table.
Idea : you have an infinite number of stack,initially empty,
and you add elements with time.
Moreover, you sometime need to undo some events.
Primitive:
1) create () : t 'a : create an initially empty table.
2) add (i:int) (b:'a) (tb:t 'a) : unit :
add an element b on a stack top i, and advance the time counter.
3) get (i:int) (tb:t 'a) : list 'a :
get the stack i at the current time.
4) stamp (tb:t 'a) : timestamp 'a : current timestamp.
5) backtrack (t:timestamp) (tb:t 'a) : unit :
If the instant t is a past instant or the current instant,
go back to the instant t. *)
module Types
use int.Int
use array.Array
use list.List
use Functions.Func
use Predicates.Pred
type timestamp 'a = {
time : int ;
size : int ;
ghost table : int -> list 'a ;
}
type t 'a = {
(* (-1) mean array resizing (doubling in size), i >= 0 mean
update at case i. *)
mutable history : list int ;
mutable current_time : int ;
mutable buffer : array (list 'a) ;
(* Invariant of stored data. *)
ghost inv : 'a -> bool ;
}
end
module Logic
use Types
use int.Int
use int.ComputerDivision
use import map.Map as M
use array.Array
use list.List
use Functions.Func
use Choice.Choice
function func_of_array (a:array 'a) (def:'a) : int -> 'a
axiom func_of_array_def : forall a:array 'a,def:'a,x:int.
func_of_array a def x = if (0 <= x < a.length)
then M.get a.elts x
else def
function current_timestamp (x:t 'a) : timestamp 'a =
{ time = x.current_time ;
size = x.buffer.length ;
table = func_of_array x.buffer Nil ; }
predicate correct_table (sz:int) (b: int -> list 'a) =
forall x:int. x >= sz \/ x < 0 -> b x = Nil
function pop (l:list 'a) : list 'a = match l with
| Nil -> default
| Cons _x q -> q
end
function unroll (tm:int) (t0:int) (h:list int) (b:int -> list 'a)
(sz:int) : timestamp 'a =
if tm = 0
then { time = t0 ; size = sz ; table = b }
else match h with
| Nil -> { time = (t0+tm) ; size = sz ; table = b ; }
| Cons x q -> if x = (-1)
then unroll (tm-1) t0 q b (div sz 2)
else unroll (tm-1) t0 q (b[x <- pop (b x)]) sz
end
predicate unroll_correct (tm:int) (h:list int) (b:int -> list 'a) (sz:int)
= match h with
| Nil -> tm = 0
| Cons x q -> if x = (-1)
then let s0 = div sz 2 in
s0 * 2 = sz /\ unroll_correct (tm-1) q b s0 /\
(forall i:int. i >= s0 \/ i < 0 -> b i = Nil)
else b x <> Nil /\ 0 <= x < sz
/\ unroll_correct (tm-1) q (b[x <- pop (b x)]) sz
end
predicate past_time (t:timestamp 'a) (tb:t 'a) =
tb.current_time >= t.time /\
unroll (tb.current_time - t.time) t.time
tb.history (func_of_array tb.buffer Nil) tb.buffer.length = t
predicate precede (tb1:t 'a) (tb2:t 'a) =
forall t:timestamp 'a. past_time t tb1 -> past_time t tb2
predicate before (t1 t2:timestamp 'a) =
t1.time <= t2.time
predicate list_forall (p:'a -> bool) (l:list 'a) = match l with
| Nil -> true
| Cons x q -> p x /\ list_forall p q
end
predicate correct (tb:t 'a) =
(forall t:timestamp 'a. past_time t tb -> t.size > 0) /\
(forall t:timestamp 'a,i:int.
past_time t tb /\ i >= 0 -> list_forall tb.inv (eval t.table i)) /\
(forall t:timestamp 'a.
past_time t tb -> correct_table t.size t.table) /\
unroll_correct tb.current_time tb.history
(func_of_array tb.buffer Nil) tb.buffer.length
(* I MUST INTRODUCE THIS PREDICATE FOR ONLY ONE REASON :
ABUSIVE RECORD DECONSTRUCTION IN ASSERTIONS. *)
predicate backtrack_to (tbold:t 'a) (tbinter:t 'a) (tbnew:t 'a) =
(forall tm:timestamp 'a.
past_time tm tbold -> past_time tm tbinter
&& time tm <= time (current_timestamp tbold)
&& time tm <= time (current_timestamp tbnew)
&& before tm (current_timestamp tbnew)
&& past_time tm tbnew) && (forall tm:timestamp 'a.
past_time tm tbold -> past_time tm tbnew) &&
precede tbold tbnew
end
module Impl
use Types
use Logic
use int.Int
use int.ComputerDivision
use import map.Map as M
use array.Array
use list.List
use Functions.Func
use Predicates.Pred
use Choice.Choice
(* extraction trick to speedup integer operations with
constants. *)
let constant mone : int = -1
let constant zero : int = 0
let constant one : int = 1
let constant two : int = 2
let create (ghost p: 'a -> bool) : t 'a
ensures { forall t:timestamp 'a.
past_time t result -> t.table = const Nil }
ensures { past_time (current_timestamp result) result }
ensures { result.inv = p }
ensures { correct result }
=
let res = {
history = Nil ;
current_time = zero ;
buffer = make one Nil ;
inv = p ;
} in
assert { extensionalEqual (func_of_array res.buffer Nil) (const Nil) } ;
res
(* Internal utility (break some of the invariants),
but useful in practice. *)
let add_event (x:int) (tb:t 'a) : unit
writes { tb.history,tb.current_time }
ensures { tb.history = Cons x (old tb).history }
ensures { tb.current_time = (old tb).current_time + 1 }
=
tb.history <- Cons x tb.history ;
tb.current_time <- tb.current_time + one
(* Internal utility. *)
let resize_for (x:int) (tb:t 'a) : unit
writes { tb }
requires { correct tb }
requires { x >= tb.buffer.length }
ensures { x < tb.buffer.length }
ensures { precede (old tb) tb }
ensures { correct tb }
ensures { (current_timestamp tb).table =
(current_timestamp (old tb)).table }
=
(* pattern : in order to do an optimization
(resize only once), introduce a ghost value
on which we 'execute' the unoptimized code and
'check' at end that it give the same result. *)
let ghost tbc = {
history = tb.history ;
current_time = tb.current_time ;
buffer = copy tb.buffer;
inv = tb.inv ;
} in
let rec aux (size:int) : int
requires { 0 < size <= x }
requires { correct tbc }
requires { tbc.history = tb.history /\
tbc.current_time = tb.current_time /\
func_of_array tbc.buffer Nil = func_of_array tb.buffer Nil }
requires { tbc.buffer.length = size }
variant { x - size }
writes { tb.history,tb.current_time,tbc.history,tbc.current_time,tbc.buffer }
ensures { correct tbc }
ensures { tbc.history = tb.history /\
tbc.current_time = tb.current_time /\
func_of_array tbc.buffer Nil = func_of_array tb.buffer Nil }
ensures { tbc.buffer.length = result }
ensures { result > x }
ensures { result >= size }
ensures { precede (old tbc) tbc }
=
label AuxInit in
assert { past_time (current_timestamp tbc) tbc } ;
add_event mone tb ;
add_event mone tbc ;
let size2 = two * size in
let ghost buf2 = make size2 Nil in
let buf1 = tbc.buffer in
blit buf1 zero buf2 zero size ;
tbc.buffer <- buf2 ;
assert { extensionalEqual (func_of_array tbc.buffer Nil)
(func_of_array (tbc at AuxInit).buffer Nil) } ;
assert { forall t:timestamp 'a.
(past_time t (tbc at AuxInit) \/ t = current_timestamp tbc) <-> past_time t tbc } ;
if size2 > x
then size2
else aux size2 in
let len = length tb.buffer in
assert { extensionalEqual (func_of_array tbc.buffer Nil)
(func_of_array tb.buffer Nil) } ;
assert { len = (current_timestamp tb).size } ;
let size = aux len in
let buf2 = make size Nil in
let buf1 = tb.buffer in
blit buf1 zero buf2 zero len ;
assert { extensionalEqual (func_of_array buf1 Nil)
(func_of_array buf2 Nil) } ;
tb.buffer <- buf2
let iadd (x:int) (b:'a) (tb:t 'a) : unit
writes { tb.history,tb.current_time,tb.buffer.elts }
requires { 0 <= x < tb.buffer.length }
requires { correct tb }
requires { inv tb b }
ensures { past_time (current_timestamp tb) tb }
ensures { correct tb }
ensures { precede (old tb) tb }
ensures { let tb0 = (current_timestamp (old tb)).table in
(current_timestamp tb).table = tb0[x <- Cons b (tb0 x)] }
=
label Init in
let buf = tb.buffer in
buf[x]<- Cons b (buf[x]) ;
add_event x tb ;
assert { let tb0 = (current_timestamp (tb at Init)).table in
extensionalEqual ((current_timestamp tb).table) (tb0[x <- Cons b (tb0 x)]) } ;
assert { let tb0 = (current_timestamp (tb at Init)).table in
let tb1 = (current_timestamp tb).table in
extensionalEqual (tb1[x <- pop (tb1 x)]) tb0 } ;
assert { past_time (current_timestamp tb) tb } ;
assert { forall t:timestamp 'a.
past_time t tb <-> past_time t (tb at Init) \/ t = current_timestamp tb } ;
assert { precede (tb at Init) tb }
let add (x:int) (b:'a) (tb:t 'a) : unit
writes { tb }
requires { correct tb }
requires { x >= 0 }
requires { inv tb b }
ensures { past_time (current_timestamp tb) tb }
ensures { correct tb }
ensures { precede (old tb) tb }
ensures { let tb0 = (current_timestamp (old tb)).table in
(current_timestamp tb).table = tb0[x <- Cons b (tb0 x)] }
=
if x >= length tb.buffer
then resize_for x tb ;
iadd x b tb
let get (tb:t 'a) (x:int) : list 'a
requires { correct tb }
requires { x >= 0 }
ensures { result = table (current_timestamp tb) x }
ensures { list_forall tb.inv result }
=
if x >= length tb.buffer
then Nil
else let res = tb.buffer[x] in
(assert { res = table (current_timestamp tb) x } ; res )
let backtrack (t:timestamp 'a) (tb:t 'a) : unit
writes { tb }
requires { past_time t tb }
requires { correct tb }
ensures { correct tb }
ensures { current_timestamp tb = t }
ensures { past_time (current_timestamp tb) tb }
ensures { forall t2:timestamp 'a. before t2 t /\ past_time t2 (old tb) ->
past_time t2 tb }
ensures { precede tb (old tb) }
=
let final_size = t.size in
let ghost tbc = {
history = tb.history ;
current_time = tb.current_time ;
buffer = copy tb.buffer ;
inv = tb.inv ;
} in
let rec unroll (delta:int) : unit
requires { correct tbc }
requires { past_time t tbc }
requires { delta >= 0 }
requires { tbc.current_time = t.time + delta }
requires { tbc.history = tb.history /\
(forall x:int. 0 <= x < final_size /\ x < tbc.buffer.length ->
func_of_array tbc.buffer Nil x = func_of_array tb.buffer Nil x) }
requires { tb.buffer.length <= final_size }
variant { delta }
writes { tb.history,tb.buffer.elts,tbc }
ensures { correct tbc }
ensures { tbc.history = tb.history /\
(forall x:int. 0 <= x < final_size ->
func_of_array tbc.buffer Nil x = func_of_array tb.buffer Nil x) }
ensures { current_timestamp tbc = t }
(* This is a trick avoiding an inductive reasoning outside. *)
ensures { tbc.buffer.length <= (old tbc).buffer.length }
ensures { precede tbc (old tbc) }
ensures { forall t2:timestamp 'a. before t2 t /\ past_time t2 (old tbc) ->
past_time t2 tbc }
=
label UInit in
if delta <> zero
then begin
match tb.history with
| Nil -> absurd
| Cons x q -> tb.history <- q ;
tbc.history <- q ;
tbc.current_time <- tbc.current_time - one ;
if x = mone
then begin
let buf1 = tbc.buffer in
let len = length buf1 in
let len2 = div len two in
(* nothing to do on non-ghost side. *)
let buf2 = make len2 Nil in
blit buf1 zero buf2 zero len2 ;
tbc.buffer <- buf2 ;
assert { let t0 = { time = tbc.current_time ;
size = len2 ;
table = func_of_array (tbc at UInit).buffer Nil
} in
let t1 = { t0 with table = func_of_array tbc.buffer Nil } in
past_time t0 (tbc at UInit) &&
extensionalEqual t0.table t1.table && t0 = t1 } ;
assert { extensionalEqual (func_of_array tbc.buffer Nil)
(func_of_array (tbc at UInit).buffer Nil) } ;
assert { precede tbc (tbc at UInit) } ;
unroll (delta - one)
end else begin
assert { 0 <= x < tbc.buffer.length } ;
if x < final_size
then begin
let h = tb.buffer[x] in
match h with
| Nil -> absurd
| Cons _ q -> tb.buffer[x]<- q ;
tbc.buffer[x]<- q ;
assert {
let tb0 = func_of_array (tbc at UInit).buffer Nil in
extensionalEqual (tb0[x <- pop (tb0 x)])
(func_of_array tbc.buffer Nil) } ;
assert { precede tbc (tbc at UInit) } ;
unroll (delta - one)
end
end
else begin
let hc = tbc.buffer[x] in
match hc with
| Nil -> absurd
| Cons _ q -> tbc.buffer[x]<- q
end ;
assert { let tb0 = func_of_array (tbc at UInit).buffer Nil in
extensionalEqual (tb0[x <- pop (tb0 x)])
(func_of_array tbc.buffer Nil) } ;
assert { precede tbc (tbc at UInit) } ;
(* nothing to do on non-ghost side. *)
unroll (delta - one)
end
end
end
end
in
assert { extensionalEqual (func_of_array tb.buffer Nil)
(func_of_array tbc.buffer Nil) } ;
(* direct resizing if necessary. *)
if final_size < length tb.buffer
then begin
let buf2 = make final_size Nil in
let buf1 = tb.buffer in
blit buf1 zero buf2 zero final_size ;
tb.buffer <- buf2
end ;
let tm0 = tb.current_time in
tb.current_time <- t.time ;
unroll (tm0 - t.time) ;
assert { extensionalEqual (func_of_array tb.buffer Nil)
(func_of_array tbc.buffer Nil) }
val ghost hack_func_of_array (a:array 'a) (def:'a) : int -> 'a
ensures { result = func_of_array a def }
let stamp (tb:t 'a) : timestamp 'a
requires { correct tb }
ensures { result = current_timestamp tb }
=
{
time = tb.current_time ;
size = length tb.buffer ;
table = hack_func_of_array tb.buffer Nil ;
}
(* look for the correct syntax :
meta "remove_program" val hack_func_of_array*)
end
|