1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
|
module Sem
use Choice.Choice
use Functions.Func
use Firstorder_symbol_spec.Spec
use Firstorder_term_spec.Spec
use Firstorder_formula_spec.Spec
use Firstorder_formula_list_spec.Spec
use Firstorder_tableau_spec.Spec
use bool.Bool
use list.List
use option.Option
use OptionFuncs.Funcs
type model 'ls 'st = {
interp_fun : 'ls -> (list 'st -> 'st) ;
interp_pred : 'ls -> (list 'st -> bool) ;
}
function term_semantic (t:fo_term 'ls 'b) (m:model 'ls 'st)
(rho:'b -> 'st) : 'st = match t with
| Var_fo_term x -> rho x
| App (Var_symbol f) l -> let ifun = m.interp_fun in
ifun f (term_list_semantic l m rho)
end
with term_list_semantic (t:fo_term_list 'ls 'b) (m:model 'ls 'st)
(rho:'b -> 'st) : list 'st = match t with
| FONil -> Nil
| FOCons x q -> Cons (term_semantic x m rho) (term_list_semantic q m rho)
end
predicate formula_semantic (t:fo_formula 'ls 'b) (m:model 'ls 'st)
(rho:'b -> 'st) = match t with
| Forall t -> forall x:'st.
formula_semantic t m (ocase rho x)
| Exists t -> exists x:'st.
formula_semantic t m (ocase rho x)
| And t1 t2 -> formula_semantic t1 m rho /\ formula_semantic t2 m rho
| Or t1 t2 -> formula_semantic t1 m rho \/ formula_semantic t2 m rho
| Not t -> not (formula_semantic t m rho)
| FTrue -> true
| FFalse -> false
| PApp (Var_symbol p) l -> let ipred = m.interp_pred in
ipred p (term_list_semantic l m rho)
end
predicate formula_list_conj_semantic (t:fo_formula_list 'ls 'b)
(m:model 'ls 'st) (rho:'b -> 'st) = match t with
| FOFNil -> true
| FOFCons x q -> formula_semantic x m rho /\
formula_list_conj_semantic q m rho
end
predicate formula_list_disj_semantic (t:fo_formula_list 'ls 'b)
(m:model 'ls 'st) (rho:'b -> 'st) = match t with
| FOFNil -> false
| FOFCons x q -> formula_semantic x m rho \/
formula_list_disj_semantic q m rho
end
predicate tableau_node (b:bool) (phib:fo_formula_list 'ls 'b)
(phi0:fo_formula 'ls 'b) (m:model 'ls 'st) (rho:'b -> 'st) =
( b = True /\ formula_semantic phi0 m rho)
\/ formula_list_disj_semantic phib m rho
(* This one work by accumulation, as it is related to a context. *)
predicate tableau_semantic_with (t:tableau 'ls 'b)
(b:bool) (m:model 'ls 'st) (rho:'b -> 'st) =
match t with
| Root -> b = True
| Node tnext phi0 phib ->
let b' = if tableau_node b phib phi0 m rho
then True
else False in
tableau_semantic_with tnext b' m rho
end
(* Abstraction-definition axiom :
function semantic_subst (s:'b -> (fo_term 'ls 'c))
(m:model 'ls 'st) (rho:'c -> 'st) : 'b -> 'st =
(\ x:'b. term_semantic (s x) m rho) *)
function semantic_subst (s:'b -> (fo_term 'ls 'c))
(m:model 'ls 'st) (rho:'c -> 'st) : 'b -> 'st
axiom semantic_subst_def : forall s:'b -> (fo_term 'ls 'c),
m:model 'ls 'st, rho:'c -> 'st, x:'b.
semantic_subst s m rho x = term_semantic (s x) m rho
(*(* Abstraction-definition axiom :
constant symbol_name : (symbol 'b) -> 'b =
(\ x:symbol 'b. match x with Var_symbol x -> x end) *)
constant symbol_name : (symbol 'b) -> 'b
axiom symbol_name_def : forall x:symbol 'b.
symbol_name x = match x with Var_symbol x -> x end
let lemma symbol_name_subst_identity_inverse (u:unit) : unit
ensures { rcompose symbol_name subst_id_symbol =
(identity:(symbol 'b) -> (symbol 'b)) }
ensures { rcompose subst_id_symbol symbol_name =
(identity:'b -> 'b) }
=
assert { extensionalEqual (identity:(symbol 'b) -> (symbol 'b))
(rcompose symbol_name subst_id_symbol) } ;
assert { extensionalEqual (identity:'b -> 'b)
(rcompose subst_id_symbol symbol_name) }*)
function model_rename (r:'b -> 'c) (m:model 'c 'st) :
model 'b 'st = {
interp_fun = rcompose r m.interp_fun ;
interp_pred = rcompose r m.interp_pred ;
}
lemma model_rename_id : forall m:model 'b 'st.
model_rename identity m = m
(* semantic commutation with substitution.
Required for example for
universal quantification elimination deduction rule:
forall x. phi -> phi[x <- t] come from this lemma
(*and generally speaking, quantifier handling*) *)
let rec lemma term_semantic_subst_commutation (t:fo_term 'ls 'b)
(m:model 'ls2 'st) (rho : 'c -> 'st)
(thetal:'ls -> 'ls2)
(theta:'b -> (fo_term 'ls2 'c)) : unit
ensures { term_semantic (
subst_fo_term t (rcompose thetal subst_id_symbol) theta) m rho =
term_semantic t (model_rename thetal m) (semantic_subst theta m rho) }
variant { size_fo_term t }
=
match t with
| Var_fo_term x -> ()
| App (Var_symbol f) l ->
term_list_semantic_subst_commutation l m rho thetal theta ;
let thetals = rcompose thetal subst_id_symbol in
assert { subst_fo_term t thetals theta =
App (Var_symbol (thetal f)) (subst_fo_term_list l thetals theta) } ;
let m2 = model_rename thetal m in
let l2 = term_list_semantic l m2 (semantic_subst theta m rho) in
assert { eval m.interp_fun (thetal f) l2 =
eval m2.interp_fun f l2 }
end
with lemma term_list_semantic_subst_commutation (t:fo_term_list 'ls 'b)
(m:model 'ls2 'st) (rho : 'c -> 'st)
(thetal:'ls -> 'ls2)
(theta:'b -> (fo_term 'ls2 'c)) : unit
ensures { term_list_semantic (
subst_fo_term_list t (rcompose thetal subst_id_symbol) theta) m rho =
term_list_semantic t (model_rename thetal m)
(semantic_subst theta m rho) }
variant { size_fo_term_list t }
=
match t with
| FONil -> ()
| FOCons x q -> term_semantic_subst_commutation x m rho thetal theta ;
term_list_semantic_subst_commutation q m rho thetal theta
end
let lemma term_list_semantic_rename_commutation (t:fo_term_list 'ls 'b)
(m:model 'ls2 'st) (rho:'c -> 'st)
(thetal:'ls -> 'ls2) (theta:'b -> 'c) : unit
ensures { term_list_semantic (
rename_fo_term_list t thetal theta) m rho =
term_list_semantic t (model_rename thetal m)
(rcompose theta rho) }
=
let p1 = rcompose theta rho in
let p2 = semantic_subst (rcompose theta subst_id_fo_term) m rho in
assert { extensionalEqual p1 p2 && p1 = p2 }
let lemma term_semantic_rename_commutation (t:fo_term 'ls 'b)
(m:model 'ls2 'st) (rho:'c -> 'st)
(thetal:'ls -> 'ls2) (theta:'b -> 'c) : unit
ensures { term_semantic (rename_fo_term t thetal theta) m rho =
term_semantic t (model_rename thetal m) (rcompose theta rho) }
=
assert { extensionalEqual (rcompose theta rho)
(semantic_subst (subst_of_rename_fo_term theta) m rho) }
let lemma semantic_lifting_commutation (theta:'b -> (fo_term 'ls 'c))
(rho : 'c -> 'st) (m:model 'ls 'st) (x:'st) : unit
ensures { semantic_subst (olifts_fo_term theta) m (ocase rho x) =
ocase (semantic_subst theta m rho) x }
=
let stheta = olifts_fo_term theta in
let srho = ocase rho x in
let p1 = semantic_subst stheta m srho in
let ctr = semantic_subst theta m rho in
let p2 = ocase ctr x in
assert { forall x:option 'b. match x with
| None -> p1 None = p2 None
| Some z -> p1 (Some z) = p2 (Some z) end
&& p1 x = p2 x } ;
assert { extensionalEqual p1 p2 }
let lemma formula_semantic_subst_commutation (t0:fo_formula 'ls 'b)
(m0:model 'ls2 'st)
(thetal0:'ls -> 'ls2)
(theta0:'b -> (fo_term 'ls2 'c))
(rho:'c -> 'st) : unit
ensures { formula_semantic (
subst_fo_formula t0 (rcompose thetal0 subst_id_symbol) theta0) m0 rho
<-> formula_semantic t0
(model_rename thetal0 m0) (semantic_subst theta0 m0 rho) }
=
let rec ghost aux (t:fo_formula 'ls3 'b2)
(m:model 'ls4 'st)
(thetal:'ls3 -> 'ls4)
(theta:'b2 -> (fo_term 'ls4 'c2)) : unit
ensures { forall rho:'c2 -> 'st.
formula_semantic (
subst_fo_formula t (rcompose thetal subst_id_symbol) theta) m rho
<-> formula_semantic t
(model_rename thetal m) (semantic_subst theta m rho) }
variant { size_fo_formula t }
=
let thetals = rcompose thetal subst_id_symbol in
match t with
| Forall t2 -> let os = olifts_fo_term theta in
let st = subst_fo_formula t thetals theta in
let st2 = subst_fo_formula t2 thetals os in
aux t2 m thetal os ;
assert { st = Forall st2 }
| Exists t2 -> let os = olifts_fo_term theta in
let st = subst_fo_formula t thetals theta in
let st2 = subst_fo_formula t2 thetals os in
aux t2 m thetal os ;
assert { st = Exists st2 }
| And t1 t2 -> aux t1 m thetal theta ;
aux t2 m thetal theta
| Or t1 t2 -> aux t1 m thetal theta ;
aux t2 m thetal theta
| Not t2 -> aux t2 m thetal theta ;
let st = subst_fo_formula t thetals theta in
let st2 = subst_fo_formula t2 thetals theta in
assert { st = Not st2 }
| FTrue -> ()
| FFalse -> ()
| PApp (Var_symbol p) l ->
let l2 = subst_fo_term_list l thetals theta in
let t2 = subst_fo_formula t thetals theta in
assert { t2 = PApp (Var_symbol (thetal p)) l2 } ;
let m2 = model_rename thetal m in
assert { forall rho:'c2 -> 'st.
let rho2 = semantic_subst theta m rho in
let l3 = term_list_semantic l m2 rho2 in
let l4 = term_list_semantic l2 m rho in
(l3 = l4 /\
(formula_semantic t m2 rho2 <->
eval m2.interp_pred p l3) /\
(formula_semantic t2 m rho <->
eval m.interp_pred (thetal p) l4)) &&
(formula_semantic t m2 rho2 <->
formula_semantic t2 m rho) }
end in
aux t0 m0 thetal0 theta0
let lemma formula_semantic_rename_commutation
(t:fo_formula 'ls 'b) (m:model 'ls2 'st)
(thetal:'ls -> 'ls2)
(theta:'b -> 'c) (rho:'c -> 'st) : unit
ensures { formula_semantic (rename_fo_formula t thetal theta) m rho
<-> formula_semantic t (model_rename thetal m) (rcompose theta rho) }
=
let thetas = rcompose theta subst_id_fo_term in
assert { rename_fo_formula t thetal theta =
subst_fo_formula t (rcompose thetal subst_id_symbol) thetas } ;
let p1 = rcompose theta rho in let p2 = semantic_subst thetas m rho in
assert { extensionalEqual p1 p2 && p1 = p2 }
let lemma formula_semantic_term_subst_commutation
(t:fo_formula 'ls 'b) (m:model 'ls 'st)
(theta:'b -> (fo_term 'ls 'c)) (rho:'c -> 'st) : unit
ensures {
formula_semantic (subst_fo_formula t subst_id_symbol theta) m rho <->
formula_semantic t m (semantic_subst theta m rho) }
=
let t2 = subst_fo_formula t (rcompose identity subst_id_symbol) theta in
let rho2 = semantic_subst theta m rho in
assert { formula_semantic t2 m rho <->
formula_semantic t (model_rename identity m) rho2 }
let lemma formula_semantic_term_rename_commutation
(t:fo_formula 'ls 'b) (m:model 'ls 'st)
(theta:'b -> 'c) (rho:'c -> 'st) : unit
ensures { formula_semantic (rename_fo_formula t identity theta) m rho <->
formula_semantic t m (rcompose theta rho) }
=
()
let rec lemma formula_list_conj_semantic_subst_commutation
(t:fo_formula_list 'ls 'b) (m:model 'ls2 'st)
(thetal:'ls -> 'ls2)
(theta:'b -> (fo_term 'ls2 'c)) (rho:'c -> 'st) : unit
ensures { formula_list_conj_semantic (
subst_fo_formula_list t (rcompose thetal subst_id_symbol) theta) m rho
<-> formula_list_conj_semantic t
(model_rename thetal m) (semantic_subst theta m rho) }
variant { size_fo_formula_list t }
=
match t with | FOFNil -> () | FOFCons _ q ->
formula_list_conj_semantic_subst_commutation q m thetal theta rho end
let rec lemma formula_list_disj_semantic_subst_commutation
(t:fo_formula_list 'ls 'b) (m:model 'ls2 'st)
(thetal:'ls -> 'ls2)
(theta:'b -> (fo_term 'ls2 'c)) (rho:'c -> 'st) : unit
ensures { formula_list_disj_semantic (
subst_fo_formula_list t (rcompose thetal subst_id_symbol) theta) m rho
<-> formula_list_disj_semantic t
(model_rename thetal m) (semantic_subst theta m rho) }
variant { size_fo_formula_list t }
=
match t with | FOFNil -> () | FOFCons _ q ->
formula_list_disj_semantic_subst_commutation q m thetal theta rho end
let lemma formula_list_conj_semantic_term_subst_commutation
(t:fo_formula_list 'ls 'b) (m:model 'ls 'st)
(theta:'b -> (fo_term 'ls 'c)) (rho:'c -> 'st) : unit
ensures { formula_list_conj_semantic
(subst_fo_formula_list t subst_id_symbol theta) m rho <->
formula_list_conj_semantic t m (semantic_subst theta m rho) }
=
formula_list_conj_semantic_subst_commutation t m identity theta rho
let lemma formula_list_disj_semantic_term_subst_commutation
(t:fo_formula_list 'ls 'b) (m:model 'ls 'st)
(theta:'b -> (fo_term 'ls 'c)) (rho:'c -> 'st) : unit
ensures { formula_list_disj_semantic
(subst_fo_formula_list t subst_id_symbol theta) m rho <->
formula_list_disj_semantic t m (semantic_subst theta m rho) }
=
formula_list_disj_semantic_subst_commutation t m identity theta rho
let rec lemma tableau_semantic_subst_commutation
(t:tableau 'ls 'b) (m:model 'ls2 'st)
(b:bool)
(thetal:'ls -> 'ls2)
(theta:'b -> (fo_term 'ls2 'c)) (rho:'c -> 'st) : unit
ensures { tableau_semantic_with (
subst_tableau t (rcompose thetal subst_id_symbol) theta) b m rho
<-> tableau_semantic_with t b
(model_rename thetal m) (semantic_subst theta m rho) }
variant { size_tableau t }
=
match t with
| Root -> ()
| Node tnext phi0 phib ->
let s1 = rcompose thetal subst_id_symbol in
let b' = if tableau_node b
(subst_fo_formula_list phib s1 theta)
(subst_fo_formula phi0 s1 theta) m rho
then True
else False in
tableau_semantic_subst_commutation tnext m b' thetal theta rho
end
let lemma tableau_semantic_term_subst_commutation
(t:tableau 'ls 'b) (b:bool) (m:model 'ls 'st)
(theta:'b -> (fo_term 'ls 'c)) (rho:'c -> 'st) : unit
ensures { tableau_semantic_with (
subst_tableau t subst_id_symbol theta) b m rho <->
tableau_semantic_with t b m (semantic_subst theta m rho) }
=
tableau_semantic_subst_commutation t m b identity theta rho
let rec lemma term_semantic_depend_only_free_var
(t:fo_term 'ls 'b) (m1 m2:model 'ls 'st)
(rho1 rho2:'b -> 'st) : unit
requires { forall f:'ls. is_symbol_free_var_in_fo_term f t ->
eval m1.interp_fun f = eval m2.interp_fun f /\
eval m1.interp_pred f = eval m2.interp_pred f }
requires { forall x:'b. is_fo_term_free_var_in_fo_term x t ->
rho1 x = rho2 x }
ensures { term_semantic t m1 rho1 = term_semantic t m2 rho2 }
variant { size_fo_term t }
=
match t with Var_fo_term x -> () | App (Var_symbol f) l ->
term_list_semantic_depend_only_free_var l m1 m2 rho1 rho2 ;
assert { is_symbol_free_var_in_fo_term f t } end
with lemma term_list_semantic_depend_only_free_var
(t:fo_term_list 'ls 'b) (m1 m2:model 'ls 'st)
(rho1 rho2:'b -> 'st) : unit
requires { forall f:'ls. is_symbol_free_var_in_fo_term_list f t ->
eval m1.interp_fun f = eval m2.interp_fun f /\
eval m1.interp_pred f = eval m2.interp_pred f }
requires { forall x:'b. is_fo_term_free_var_in_fo_term_list x t ->
rho1 x = rho2 x }
ensures { term_list_semantic t m1 rho1 = term_list_semantic t m2 rho2 }
variant { size_fo_term_list t }
=
match t with FONil -> () | FOCons x q ->
term_semantic_depend_only_free_var x m1 m2 rho1 rho2 ;
term_list_semantic_depend_only_free_var q m1 m2 rho1 rho2 end
let lemma formula_semantic_depend_only_free_var
(t:fo_formula 'ls0 'b0) (m1 m2:model 'ls0 'st0)
(rho1 rho2:'b0 -> 'st0) : unit
requires { forall f:'ls0. is_symbol_free_var_in_fo_formula f t ->
eval m1.interp_fun f = eval m2.interp_fun f /\
eval m1.interp_pred f = eval m2.interp_pred f }
requires { forall x:'b0. is_fo_term_free_var_in_fo_formula x t ->
rho1 x = rho2 x }
ensures { formula_semantic t m1 rho1 <-> formula_semantic t m2 rho2 }
=
let rec aux (t:fo_formula 'ls 'b) (m1 m2:model 'ls 'st) : unit
requires { forall f:'ls. is_symbol_free_var_in_fo_formula f t ->
eval m1.interp_fun f = eval m2.interp_fun f /\
eval m1.interp_pred f = eval m2.interp_pred f }
ensures { forall rho1 rho2:'b -> 'st.
(forall x:'b.
is_fo_term_free_var_in_fo_formula x t -> rho1 x = rho2 x) ->
formula_semantic t m1 rho1 <-> formula_semantic t m2 rho2 }
variant { size_fo_formula t }
=
match t with
| Forall t2 -> aux t2 m1 m2 ;
assert { forall rho1 rho2:'b -> 'st.
(forall x:'b.
is_fo_term_free_var_in_fo_formula x t -> rho1 x = rho2 x) ->
((forall x:'st. formula_semantic t2 m1 (ocase rho1 x) <->
formula_semantic t2 m2 (ocase rho2 x)) &&
((forall x:'st. formula_semantic t2 m1 (ocase rho1 x)) <->
formula_semantic t m1 rho1) &&
((forall x:'st. formula_semantic t2 m1 (ocase rho2 x)) <->
formula_semantic t m2 rho2)) }
| Exists t2 -> aux t2 m1 m2 ;
assert { forall rho1 rho2:'b -> 'st.
(forall x:'b.
is_fo_term_free_var_in_fo_formula x t -> rho1 x = rho2 x) ->
((forall x:'st. formula_semantic t2 m1 (ocase rho1 x) <->
formula_semantic t2 m2 (ocase rho2 x)) &&
((exists x:'st. formula_semantic t2 m1 (ocase rho1 x)) <->
formula_semantic t m1 rho1) &&
((exists x:'st. formula_semantic t2 m1 (ocase rho2 x)) <->
formula_semantic t m2 rho2)) }
| And t1 t2 -> aux t1 m1 m2 ; aux t2 m1 m2
| Or t1 t2 -> aux t1 m1 m2 ; aux t2 m1 m2
| Not t2 -> aux t2 m1 m2
| FTrue -> ()
| FFalse -> ()
| PApp (Var_symbol p) l ->
assert { is_symbol_free_var_in_fo_formula p t } ;
assert { forall rho1 rho2:'b -> 'st.
((forall x:'b. is_fo_term_free_var_in_fo_formula x t ->
rho1 x = rho2 x) ->
term_list_semantic l m1 rho1 = term_list_semantic l m2 rho2) /\
(formula_semantic t m1 rho1 <->
eval m1.interp_pred p (term_list_semantic l m1 rho1)) /\
(formula_semantic t m2 rho2 <->
eval m2.interp_pred p (term_list_semantic l m2 rho2)) }
end in
aux t m1 m2
let rec lemma formula_list_conj_semantic_depend_only_free_var
(t:fo_formula_list 'ls 'b) (m1 m2:model 'ls 'st)
(rho1 rho2:'b -> 'st) : unit
requires { forall f:'ls. is_symbol_free_var_in_fo_formula_list f t ->
eval m1.interp_fun f = eval m2.interp_fun f /\
eval m1.interp_pred f = eval m2.interp_pred f }
requires { forall x:'b. is_fo_term_free_var_in_fo_formula_list x t ->
rho1 x = rho2 x }
ensures { formula_list_conj_semantic t m1 rho1 <->
formula_list_conj_semantic t m2 rho2 }
variant { size_fo_formula_list t }
=
match t with FOFNil -> () | FOFCons x q ->
formula_semantic_depend_only_free_var x m1 m2 rho1 rho2 ;
formula_list_conj_semantic_depend_only_free_var q m1 m2 rho1 rho2 end
let rec lemma formula_list_disj_semantic_depend_only_free_var
(t:fo_formula_list 'ls 'b) (m1 m2:model 'ls 'st)
(rho1 rho2:'b -> 'st) : unit
requires { forall f:'ls. is_symbol_free_var_in_fo_formula_list f t ->
eval m1.interp_fun f = eval m2.interp_fun f /\
eval m1.interp_pred f = eval m2.interp_pred f }
requires { forall x:'b. is_fo_term_free_var_in_fo_formula_list x t ->
rho1 x = rho2 x }
ensures { formula_list_disj_semantic t m1 rho1 <->
formula_list_disj_semantic t m2 rho2 }
variant { size_fo_formula_list t }
=
match t with FOFNil -> () | FOFCons x q ->
formula_semantic_depend_only_free_var x m1 m2 rho1 rho2 ;
formula_list_disj_semantic_depend_only_free_var q m1 m2 rho1 rho2 end
predicate formula_list_mem (phi:fo_formula 'ls 'b)
(l:fo_formula_list 'ls 'b) = match l with
| FOFNil -> false | FOFCons x q -> x = phi \/ formula_list_mem phi q end
let rec lemma formula_list_conj_semantic_other_def
(l:fo_formula_list 'ls 'b) (m:model 'ls 'st)
(rho:'b -> 'st) : unit
ensures { formula_list_conj_semantic l m rho <->
(forall phi:fo_formula 'ls 'b.
formula_list_mem phi l -> formula_semantic phi m rho) }
variant { size_fo_formula_list l }
= match l with FOFNil -> () | FOFCons _ q ->
formula_list_conj_semantic_other_def q m rho end
let rec lemma formula_list_disj_semantic_other_def
(l:fo_formula_list 'ls 'b) (m:model 'ls 'st)
(rho:'b -> 'st) : unit
ensures { formula_list_disj_semantic l m rho <->
(exists phi:fo_formula 'ls 'b.
formula_list_mem phi l /\ formula_semantic phi m rho) }
variant { size_fo_formula_list l }
= match l with FOFNil -> () | FOFCons x q ->
formula_list_disj_semantic_other_def q m rho end
(* Problem : validity/unsatifiability are not even axiomatizable in why3,
since we would have to introduce it from a type quantification.
However, we can define a demonstrability predicate and show for it
the same elimination principle as unsatisfiability. *)
(* Demonstration object (not directly a predicate,
so we can actually construct the proof object ourselves). *)
(* G |- A can be read as : for every model+interpretation,
if /\G is true then A too.
Which in particular mean : if G |- false, G have no model,
so we can use G |- false instead of unsat predicate as long
as it can represent all our demonstration steps. *)
(*type demonstration 'ls 'b =
| Axiom
| ModusPonens (demonstration 'ls 'b) (demonstration 'ls 'b)
(fo_formula 'ls 'b)
| Abstraction (demonstration 'ls 'b) (fo_formula 'ls 'b)
(fo_formula 'ls 'b)
| ConjunctionIntro (demonstration 'ls 'b) (fo_formula 'ls 'b)
(demonstration 'ls 'b) (fo_formula 'ls 'b)
| ConjunctionLeft (demonstration 'ls 'b) (fo_formula 'ls 'b)
| ConjunctionRight (demonstration 'ls 'b) (fo_formula 'ls 'b)
| DisjunctionLeft (demonstration 'ls 'b) (fo_formula 'ls 'b)
(fo_formula 'ls 'b)
| DisjunctionRight (demonstration 'ls 'b) (fo_formula 'ls 'b)
(fo_formula 'ls 'b)
| DisjunctionElim (demonstration 'ls 'b) (demonstration 'ls 'b)
(demonstration 'ls 'b) (fo_formula 'ls 'b) (fo_formula 'ls 'b)
| UniversalInstantiation (demonstration 'ls 'b)
(fo_formula 'ls (option 'b)) (fo_term 'ls 'b)
| Instantiation (demonstration 'ls 'b)
(fo_formula_list 'ls 'b)
(fo_formula 'ls 'b) 'b (fo_term 'ls 'b)
| ExistentialIntroduction (demonstration 'ls 'b)
(fo_formula 'ls (option 'b)) (fo_term 'ls 'b)
| ExistentialElimination (demonstration 'ls 'b)
(demonstration 'ls 'b)
(fo_formula 'ls (option 'b)) (fo_formula 'ls (option 'b))
| PointlessExistential (demonstration 'ls 'b)
| ExFalso (demonstration 'ls 'b)
| Trivial
| Weakening (demonstration 'ls 'b) (fo_formula_list 'ls 'b)
| Skolemization (demonstration 'ls 'b) (fo_formula 'ls 'b) 'ls*)
(*predicate is_skolem_axiom (phi:fo_formula 'ls 'b) (f:'ls)
(env:fo_term_list 'ls 'b) =
match phi with
| Forall phi2 -> is_skolem_axiom phi2 f
(FOCons (Var_fo_term None) (rename_fo_term_list env identity some))
| Or (Not (Exists phi2)) phi3 ->
phi3 = subst_fo_formula phi2 subst_id_symbol
(ocase subst_id_fo_term (App (Var_symbol f) env)) /\
not(is_symbol_free_var_in_fo_formula f phi2)
| _ -> false
end*)
(*(* Hack to force possibility of instantiation of extend_env
definition axiom ! *)
function extend_env_selection (g:(list 'st) -> ('b -> 'st))
(x:option 'b) (y:'st) (q:list 'st) : 'st = match x with
| None -> y | Some x -> g q x end
(* Abstraction-definition axiom :
function extend_env (g:(list 'st) -> ('b -> 'st) :
(list 'st) -> ((option 'b) -> 'st) =
(\ l:list 'st. (\ x:option 'b. match l with
| Cons y q -> extend_env_selection g x y q
| Nil -> default ) ) *)
function extend_env (g:(list 'st) -> ('b -> 'st)) :
(list 'st) -> ((option 'b) -> 'st)
axiom extend_env_def : forall g:(list 'st) -> ('b -> 'st),
l:list 'st,x:option 'b. extend_env g l x =
match l with
| Cons y q -> extend_env_selection g x y q
| Nil -> default
end
lemma extend_env_none : forall g:(list 'st) -> ('b -> 'st),
y:'st,l:list 'st. extend_env g (Cons y l) None = y
lemma extend_env_some : forall g:(list 'st) -> ('b -> 'st),
x:'b,y:'st,l:list 'st. extend_env g (Cons y l) (Some x) = g l x*)
(* Abstraction-definition axiom :
function skolem_predicate (phi:fo_formula 'ls (option 'b))
(m:model 'ls 'st) (rho:'b -> 'st) : 'st -> bool =
(\ x:'st. formula_semantic phi m (ocase rho x) ) *)
function skolem_predicate (phi:fo_formula 'ls (option 'b))
(m:model 'ls 'st) (rho:'b -> 'st) : 'st -> bool
axiom skolem_predicate_def : forall phi:fo_formula 'ls (option 'b),
m:model 'ls 'st,rho:'b -> 'st,x:'st.
skolem_predicate phi m rho x <-> formula_semantic phi m (ocase rho x)
(* Abstraction-definition axiom :
function skolem_function (phi:fo_formula 'ls (option 'b))
(m:model 'ls 'st) (g:(list 'st) -> ('b -> 'st)) : (list 'st) -> 'st
= (\ l:list 'st. choice (skolem_predicate phi m rho (g l)) ) *)
function skolem_function (phi:fo_formula 'ls (option 'b))
(m:model 'ls 'st) (g:(list 'st) -> ('b -> 'st)) : (list 'st) -> 'st
axiom skolem_function_def : forall phi:fo_formula 'ls (option 'b),
m:model 'ls 'st,g:(list 'st) -> ('b -> 'st),l:list 'st.
skolem_function phi m g l = choice (skolem_predicate phi m (g l))
(* Abstraction-definition axiom :
function skolem_transformer (phi:fo_formula 'ls (option 'b)) (f:'ls)
(g:(list 'st) -> ('b -> 'st)) : (model 'ls 'st) -> (model 'ls 'st) =
(\ m:model 'ls 'st.
{
interp_fun = m.interp_fun[f <- skolem_function phi m g] ;
interp_pred = m.interp_pred ;
}) *)
function skolem_transformer (phi:fo_formula 'ls (option 'b)) (f:'ls)
(g:(list 'st) -> ('b -> 'st)) : (model 'ls 'st) -> (model 'ls 'st)
axiom skolem_transformer_def : forall phi:fo_formula 'ls (option 'b),f:'ls,
g:(list 'st) -> ('b -> 'st), m:model 'ls 'st.
skolem_transformer phi f g m = {
interp_fun = m.interp_fun[f <- skolem_function phi m g] ;
interp_pred = m.interp_pred ;
}
let ghost skolem_model_transformer (phi:fo_formula 'ls (option 'b)) (f:'ls)
(vars:fo_term_list 'ls 'b)
(g:(list 'st) -> ('b -> 'st)) : (model 'ls 'st) -> (model 'ls 'st)
requires { not(is_symbol_free_var_in_fo_formula f phi) }
requires { forall m:model 'ls 'st, rho:'b -> 'st,x:'b.
is_fo_term_free_var_in_fo_formula (Some x) phi ->
g (term_list_semantic vars m rho) x = rho x }
requires { not(is_symbol_free_var_in_fo_term_list f vars) }
ensures { forall m:model 'ls 'st.
m.interp_pred = (result m).interp_pred }
ensures { forall m:model 'ls 'st,f0:'ls.
f0 <> f -> eval m.interp_fun f0 = eval (result m).interp_fun f0 }
ensures { forall m:model 'ls 'st,rho:'b -> 'st.
formula_semantic (Exists phi) m rho ->
formula_semantic (subst_fo_formula phi subst_id_symbol
(ocase subst_id_fo_term (App (Var_symbol f) vars))) (result m) rho }
=
let skf = skolem_transformer phi f g in
let skt = App (Var_symbol f) vars in
let sks = ocase subst_id_fo_term skt in
let phi' = subst_fo_formula phi subst_id_symbol sks in
assert { forall m:model 'ls 'st,rho:'b -> 'st.
let semf = skolem_function phi m g in
let skm = skf m in
let em = term_list_semantic vars m rho in
let esm = term_list_semantic vars skm rho in
(skm.interp_fun = m.interp_fun[f <- semf]) &&
(skm.interp_pred = m.interp_pred) &&
(em = esm) &&
(forall x:'st.
let rhox = ocase rho x in
let rhox2 = ocase (g em) x in
(forall y:option 'b.
is_fo_term_free_var_in_fo_formula y phi ->
rhox y = rhox2 y) &&
(formula_semantic phi m rhox <-> formula_semantic phi m rhox2)) &&
(let s1 = semantic_subst sks skm rho in
let s2 = ocase rho (semf esm) in
s1 None = s2 None &&
(forall y:'b. s1 (Some y) = s2 (Some y)) &&
extensionalEqual s1 s2 &&
(forall f':'ls. is_symbol_free_var_in_fo_formula f' phi ->
eval m.interp_fun f' = eval skm.interp_fun f' /\
eval m.interp_pred f' = eval skm.interp_pred f') &&
(forall x:'st.
let rhox = ocase rho x in
(formula_semantic phi m (ocase (g em) x) ->
formula_semantic phi m (ocase (g em) (semf em)) &&
formula_semantic phi m (ocase rho (semf em)) &&
formula_semantic phi skm s2 &&
formula_semantic phi' skm rho) &&
(formula_semantic phi m rhox ->
formula_semantic phi' skm rho))) &&
(formula_semantic (Exists phi) m rho ->
formula_semantic phi' skm rho)
} ;
skf
(*
let ghost skolemized_model (phi0:fo_formula 'ls0 'b0) (f0:'ls0)
(m0:model 'ls0 'st) : model 'ls0 'st
requires { is_skolem_axiom phi0 f0 FONil }
requires { forall x:'b0. not(is_fo_term_free_var_in_fo_formula x phi0) }
ensures { forall rho:'b0 -> 'st.
formula_semantic phi0 result rho }
ensures { m0.interp_pred = result.interp_pred }
ensures { forall f':'ls0. f0 <> f' ->
eval m0.interp_fun f' = eval result.interp_fun f' }
=
let rec aux (phi:fo_formula 'ls 'b) (f:'ls)
(env:fo_term_list 'ls 'b)
(g:(list 'st) -> ('b -> 'st))
(m:model 'ls 'st) : model 'ls 'st
requires { is_skolem_axiom phi f env }
requires { forall rho:'b -> 'st,x:'b.
is_fo_term_free_var_in_fo_formula x phi ->
g (term_list_semantic env m rho) x = rho x }
requires { not(is_symbol_free_var_in_fo_term_list f env) }
ensures { forall rho:'b -> 'st.
formula_semantic phi result rho }
ensures { m.interp_pred = result.interp_pred }
ensures { forall f':'ls. f <> f' ->
eval m.interp_fun f' = eval result.interp_fun f' }
variant { size_fo_formula phi }
=
match phi with
| Forall phi2 ->
let renv = rename_fo_term_list env identity some in
let nenv = FOCons (Var_fo_term None)
(rename_fo_term_list env identity some) in
assert { forall rho:(option 'b) -> 'st,x:option 'b.
is_fo_term_free_var_in_fo_formula x phi2 ->
let u = term_list_semantic nenv m rho in
u = Cons (rho None) (term_list_semantic renv m rho) &&
match x with
| None -> rho x = extend_env g u x
| Some y -> is_fo_term_free_var_in_fo_formula y phi &&
rcompose some rho y = g (term_list_semantic env m
(rcompose some rho)) y = g (term_list_semantic renv m rho) y
= extend_env g u x
end } ;
aux phi2 f nenv (extend_env g) m
| Or (Not (Exists phi2)) phi3 ->
let semf = skolem_function phi2 m g in
let skm = {
interp_fun = m.interp_fun[f <- semf] ;
interp_pred = m.interp_pred ;
} in
assert { forall rho:'b -> 'st.
let em = term_list_semantic env m rho in
let esm = term_list_semantic env skm rho in
let skt = App (Var_symbol f) env in
let sks = ocase subst_id_fo_term skt in
(em = esm) &&
(phi3 = subst_fo_formula phi2 subst_id_symbol sks) &&
(forall x:'st.
let rhox = ocase rho x in
let rhox2 = ocase (g em) x in
(forall y:option 'b.
is_fo_term_free_var_in_fo_formula y phi2 ->
rhox y = rhox2 y) &&
(formula_semantic phi2 m rhox <->
formula_semantic phi2 m rhox2)) &&
(let s1 = semantic_subst sks skm rho in
let s2 = ocase rho (semf esm) in
s1 None = s2 None &&
(forall y:'b. s1 (Some y) = s2 (Some y)) &&
extensionalEqual s1 s2 &&
(forall f':'ls. is_symbol_free_var_in_fo_formula f' phi2 ->
eval m.interp_fun f' = eval skm.interp_fun f' /\
eval m.interp_pred f' = eval skm.interp_pred f') &&
(forall x:'st.
let rhox = ocase rho x in
(formula_semantic phi2 m (ocase (g em) x) ->
formula_semantic phi2 m (ocase (g em) (semf em)) &&
formula_semantic phi2 m (ocase rho (semf em)) &&
formula_semantic phi2 skm s2 &&
formula_semantic phi3 skm rho) &&
(formula_semantic phi2 m rhox <-> formula_semantic phi2 skm rhox)
&& (formula_semantic phi2 skm rhox ->
formula_semantic phi3 skm rho)))
} ;
skm
| _ -> absurd
end in
aux phi0 f0 FONil default m0*)
(*predicate deducible_from (gamma:fo_formula_list 'ls 'b)
(phi:fo_formula 'ls 'b) (d:demonstration 'ls 'b) =
match d with
| Axiom -> formula_list_mem phi gamma
| ModusPonens d1 d2 phi2 -> deducible_from gamma phi2 d1 /\
deducible_from gamma (Or (Not phi2) phi) d2
| Abstraction d phi1 phi2 ->
deducible_from (FOFCons phi1 gamma) phi2 d /\
phi = Or (Not phi1) phi2
| ConjunctionIntro d1 phi1 d2 phi2 ->
deducible_from gamma phi1 d1 /\
deducible_from gamma phi2 d2 /\
phi = And phi1 phi2
| ConjunctionLeft d phi2 -> deducible_from gamma (And phi phi2) d
| ConjunctionRight d phi2 -> deducible_from gamma (And phi2 phi) d
| DisjunctionLeft d phi1 phi2 ->
deducible_from gamma phi1 d /\ phi = Or phi1 phi2
| DisjunctionRight d phi1 phi2 ->
deducible_from gamma phi2 d /\ phi = Or phi1 phi2
| DisjunctionElim d1 d2 d3 phi1 phi2 ->
deducible_from gamma (Or phi1 phi2) d1 /\
deducible_from gamma (Or (Not phi1) phi) d2 /\
deducible_from gamma (Or (Not phi2) phi) d3
| UniversalInstantiation d phi2 t ->
deducible_from gamma (Forall phi2) d /\
phi = subst_fo_formula phi2 subst_id_symbol (ocase subst_id_fo_term t)
| Instantiation d gamma2 phi2 x t ->
let s = subst_id_fo_term[x<-t] in
deducible_from gamma2 phi2 d /\
gamma = subst_fo_formula_list gamma2 subst_id_symbol s /\
phi = subst_fo_formula phi2 subst_id_symbol s
| ExistentialIntroduction d phi2 t ->
phi = Exists phi2 /\
deducible_from gamma (
subst_fo_formula phi2 subst_id_symbol (ocase subst_id_fo_term t)) d
| ExistentialElimination d1 d2 phi1 phi2 ->
deducible_from gamma (Forall (Or (Not phi1) phi2)) d1 /\
deducible_from gamma (Exists phi1) d2 /\
phi = Exists phi2
| PointlessExistential d ->
deducible_from gamma (Exists
(rename_fo_formula phi identity some)) d
| ExFalso d -> deducible_from gamma FFalse d
| Trivial -> phi = FTrue
| Weakening d gamma2 ->
deducible_from gamma2 phi d /\
(forall phi0:fo_formula 'ls 'b.
formula_list_mem phi0 gamma2 ->
formula_list_mem phi0 gamma)
| Skolemization d phis f ->
not(is_symbol_free_var_in_fo_formula_list f gamma) /\
not(is_symbol_free_var_in_fo_formula f phi) /\
deducible_from (FOFCons phis gamma) phi d /\
is_skolem_axiom phis f FONil /\
(forall x:'b. not(is_fo_term_free_var_in_fo_formula x phis))
end
let lemma deducible_correct (gamma0:fo_formula_list 'ls 'b0)
(phi0:fo_formula 'ls 'b0) (d0:demonstration 'ls 'b0)
(m0:model 'ls 'st0) (rho0:'b0 -> 'st0) : unit
requires { deducible_from gamma0 phi0 d0 }
requires { formula_list_conj_semantic gamma0 m0 rho0 }
ensures { formula_semantic phi0 m0 rho0 }
=
let rec ghost aux (gamma:fo_formula_list 'ls 'b)
(phi:fo_formula 'ls 'b) (d:demonstration 'ls 'b)
(m:model 'ls 'st) : unit
requires { deducible_from gamma phi d }
ensures { forall rho:'b -> 'st.
formula_list_conj_semantic gamma m rho ->
formula_semantic phi m rho }
variant { d }
=
match d with
| Axiom -> ()
| ModusPonens d1 d2 phi2 ->
aux gamma phi2 d1 m ; aux gamma (Or (Not phi2) phi) d2 m
| Abstraction d1 phi1 phi2 ->
aux (FOFCons phi1 gamma) phi2 d1 m
| ConjunctionIntro d1 phi1 d2 phi2 ->
aux gamma phi1 d1 m ; aux gamma phi2 d2 m
| ConjunctionLeft d1 phi2 -> aux gamma (And phi phi2) d1 m
| ConjunctionRight d1 phi2 -> aux gamma (And phi2 phi) d1 m
| DisjunctionLeft d1 phi1 phi2 -> aux gamma phi1 d1 m
| DisjunctionRight d1 phi1 phi2 -> aux gamma phi2 d1 m
| DisjunctionElim d1 d2 d3 phi1 phi2 -> aux gamma (Or phi1 phi2) d1 m ;
aux gamma (Or (Not phi1) phi) d2 m ;
aux gamma (Or (Not phi2) phi) d3 m
| UniversalInstantiation d1 phi2 t -> aux gamma (Forall phi2) d1 m ;
assert { forall rho:'b -> 'st.
let f1 = semantic_subst (ocase subst_id_fo_term t) m rho in
let f2 = ocase rho (term_semantic t m rho) in
(forall x:option 'b. match x with
| None -> f1 None = f2 None
| Some z -> f1 (Some z) = f2 (Some z) end && f1 x = f2 x)
&& extensionalEqual f1 f2 && f1 = f2 }
| Instantiation d gamma2 phi2 x t -> aux gamma2 phi2 d m
| ExistentialIntroduction d phi2 t ->
let s = ocase subst_id_fo_term t in
let phi3 = subst_fo_formula phi2 subst_id_symbol s in
aux gamma phi3 d m ;
assert { forall rho:'b -> 'st.
let f1 = semantic_subst (ocase subst_id_fo_term t) m rho in
let f2 = ocase rho (term_semantic t m rho) in
(forall x:option 'b. match x with
| None -> f1 None = f2 None
| Some z -> f1 (Some z) = f2 (Some z) end && f1 x = f2 x)
&& extensionalEqual f1 f2 && f1 = f2 }
| ExistentialElimination d1 d2 phi1 phi2 ->
aux gamma (Forall (Or (Not phi1) phi2)) d1 m ;
aux gamma (Exists phi1) d2 m
| PointlessExistential d ->
let phi2 = rename_fo_formula phi identity some in
assert { phi2 = subst_fo_formula phi
(rcompose identity subst_id_symbol)
(rcompose some subst_id_fo_term) } ;
assert { forall rho:'b -> 'st,x:'st.
formula_semantic phi2 m (ocase rho x) <->
formula_semantic phi m rho } ;
aux gamma (Exists (rename_fo_formula phi identity some)) d m
| ExFalso d -> aux gamma FFalse d m
| Trivial -> ()
| Weakening d2 gamma2 -> aux gamma2 phi d2 m
| Skolemization d phis f ->
let skm = skolemized_model phis f m in
assert { forall rho:'b -> 'st.
(formula_list_conj_semantic gamma m rho
<-> formula_list_conj_semantic gamma skm rho) /\
(formula_semantic phi m rho <->
formula_semantic phi skm rho) } ;
aux (FOFCons phis gamma) phi d skm
| _ -> absurd
end in
aux gamma0 phi0 d0 m0
predicate entail (gamma:fo_formula_list 'ls 'b)
(phi:fo_formula 'ls 'b) =
exists d:demonstration 'ls 'b.
deducible_from gamma phi d
predicate unsat (gamma:fo_formula_list 'ls 'b) =
entail gamma FFalse
predicate valid (phi:fo_formula 'ls 'b) =
entail FOFNil phi
lemma entail_correct : forall gamma:fo_formula_list 'ls 'b,
phi:fo_formula 'ls 'b,m:model 'ls 'st,rho:'b -> 'st.
entail gamma phi ->
formula_list_conj_semantic gamma m rho -> formula_semantic phi m rho
lemma unsat_correct : forall gamma:fo_formula_list 'ls 'b,
m:model 'ls 'st,rho:'b -> 'st.
unsat gamma -> not(formula_list_conj_semantic gamma m rho)
lemma valid_correct : forall phi:fo_formula 'ls 'b,
m:model 'ls 'st,rho:'b -> 'st.
valid phi -> formula_semantic phi m rho
function imply (phi1 phi2:fo_formula 'ls 'b) : fo_formula 'ls 'b =
Or (Not phi1) phi2
function equiv (phi1 phi2:fo_formula 'ls 'b) : fo_formula 'ls 'b =
And (imply phi1 phi2) (imply phi2 phi1)
type sequent 'ls 'b = {
demo : demonstration 'ls 'b ;
context : fo_formula_list 'ls 'b ;
conclusion : fo_formula 'ls 'b ;
}
predicate sequent_correct (s:sequent 'ls 'b) =
deducible_from s.context s.conclusion s.demo
let ghost make_axiom (gamma:fo_formula_list 'ls 'b)
(phi:fo_formula 'ls 'b) : sequent 'ls 'b
requires { formula_list_mem phi gamma }
ensures { sequent_correct result }
ensures { result.context = gamma }
ensures { result.conclusion = phi }
= { demo = Axiom ; context = gamma ; conclusion = phi }
let ghost make_abstraction (s:sequent 'ls 'b) :
sequent 'ls 'b
requires { sequent_correct s }
requires { match s.context with FOFNil -> false | _ -> true end }
ensures { sequent_correct result }
ensures { match s.context with FOFNil -> false | FOFCons x q ->
result.context = q /\ result.conclusion = imply x s.conclusion end }
= match s.context with FOFNil -> absurd
| FOFCons x q -> { demo = Abstraction s.demo x s.conclusion ;
context = q ; conclusion = imply x s.conclusion }
end
let ghost modus_ponens (s1 s2:sequent 'ls 'b) : sequent 'ls 'b
requires { sequent_correct s1 /\ sequent_correct s2 }
requires { match s1.conclusion with
| Or (Not phi1) phi2 -> s2.conclusion = phi1
| _ -> false end }
requires { s1.context = s2.context }
ensures { sequent_correct result }
ensures { result.context = s1.context }
ensures { match s1.conclusion with
| Or _ phi2 -> result.conclusion = phi2
| _ -> false end }
= match s1.conclusion with
| Or (Not phi1) phi2 -> { demo = ModusPonens s2.demo s1.demo phi1 ;
context = s1.context ;
conclusion = phi2 }
| _ -> absurd end
let ghost make_classical (gamma:fo_formula_list 'ls 'b)
(phi:fo_formula 'ls 'b) : sequent 'ls 'b
ensures { sequent_correct result }
ensures { result.context = gamma }
ensures { result.conclusion = Or (Not phi) phi }
= make_abstraction (make_axiom (FOFCons phi gamma) phi)
let ghost disjunction_elimination (s1 s2 s3:sequent 'ls 'b) : sequent 'ls 'b
requires { sequent_correct s1 /\ sequent_correct s2 /\ sequent_correct s3 }
requires { match s1.conclusion , s2.conclusion , s3.conclusion with
| Or phi1 phi2 , Or (Not phi1') phi3 , Or (Not phi2') phi3' ->
phi1 = phi1' /\ phi2 = phi2' /\ phi3 = phi3'
| _ -> false end }
requires { s1.context = s2.context = s3.context }
ensures { sequent_correct result }
ensures { result.context = s1.context }
ensures { match s3.conclusion with
| Or _ phi3 -> result.conclusion = phi3
| _ -> false end }
=
match s1.conclusion , s3.conclusion with
| Or phi1 phi2 , Or _ phi3 ->
{ demo = DisjunctionElim s1.demo s2.demo s3.demo phi1 phi2 ;
context = s1.context ;
conclusion = phi3 ; }
| _ -> absurd
end
let ghost disjunction_left (s:sequent 'ls 'b) (phi2:fo_formula 'ls 'b) :
sequent 'ls 'b
requires { sequent_correct s }
ensures { sequent_correct result }
ensures { result.conclusion = Or s.conclusion phi2 }
ensures { s.context = result.context }
=
{ demo = DisjunctionLeft s.demo s.conclusion phi2 ;
context = s.context ;
conclusion = Or s.conclusion phi2 }
let ghost disjunction_right (phi1:fo_formula 'ls 'b) (s:sequent 'ls 'b) :
sequent 'ls 'b
requires { sequent_correct s }
ensures { sequent_correct result }
ensures { result.conclusion = Or phi1 s.conclusion }
ensures { s.context = result.context }
=
{ demo = DisjunctionRight s.demo phi1 s.conclusion ;
context = s.context ;
conclusion = Or phi1 s.conclusion }
let ghost conjunction (s1 s2:sequent 'ls 'b) : sequent 'ls 'b
requires { sequent_correct s1 /\ sequent_correct s2 }
requires { s1.context = s2.context }
ensures { sequent_correct result }
ensures { result.context = s1.context }
ensures { result.conclusion = And s1.conclusion s2.conclusion }
=
{ demo = ConjunctionIntro s1.demo s1.conclusion s2.demo s2.conclusion ;
context = s1.context ;
conclusion = And s1.conclusion s2.conclusion }
let ghost conjunction_left (s:sequent 'ls 'b) : sequent 'ls 'b
requires { sequent_correct s }
requires { match s.conclusion with And _ _ -> true | _ -> false end }
ensures { sequent_correct result }
ensures { result.context = s.context }
ensures { match s.conclusion with And phi _ -> result.conclusion = phi
| _ -> false end }
= match s.conclusion with
| And phi1 phi2 -> { demo = ConjunctionLeft s.demo phi2 ;
context = s.context ;
conclusion = phi1 }
| _ -> absurd
end
let ghost conjunction_right (s:sequent 'ls 'b) : sequent 'ls 'b
requires { sequent_correct s }
requires { match s.conclusion with And _ _ -> true | _ -> false end }
ensures { sequent_correct result }
ensures { result.context = s.context }
ensures { match s.conclusion with And _ phi -> result.conclusion = phi
| _ -> false end }
= match s.conclusion with
| And phi2 phi1 -> { demo = ConjunctionRight s.demo phi2 ;
context = s.context ;
conclusion = phi1 }
| _ -> absurd
end
let ghost exfalso (s:sequent 'ls 'b) (phi:fo_formula 'ls 'b) : sequent 'ls 'b
requires { sequent_correct s }
requires { match s.conclusion with FFalse -> true | _ -> false end }
ensures { sequent_correct result }
ensures { result.context = s.context }
ensures { result.conclusion = phi }
= { demo = ExFalso s.demo ; context = s.context ; conclusion = phi }
let ghost make_trivial (gamma:fo_formula_list 'ls 'b) : sequent 'ls 'b
ensures { sequent_correct result }
ensures { result.context = gamma }
ensures { result.conclusion = FTrue }
= { demo = Trivial ; context = gamma ; conclusion = FTrue }
let ghost weaken (gamma:fo_formula_list 'ls 'b)
(s:sequent 'ls 'b) : sequent 'ls 'b
requires { sequent_correct s }
requires { forall phi:fo_formula 'ls 'b.
formula_list_mem phi s.context -> formula_list_mem phi gamma }
ensures { sequent_correct result }
ensures { result.context = gamma }
ensures { result.conclusion = s.conclusion }
= { demo = Weakening s.demo s.context ;
context = gamma ;
conclusion = s.conclusion }
let ghost skolem_elim (f:'ls) (s:sequent 'ls 'b) : sequent 'ls 'b
requires { sequent_correct s }
requires { match s.context with FOFCons phis gamma ->
is_skolem_axiom phis f FONil /\
(forall x:'b. not(is_fo_term_free_var_in_fo_formula x phis)) /\
not(is_symbol_free_var_in_fo_formula_list f gamma)
| _ -> false end }
requires { not(is_symbol_free_var_in_fo_formula f s.conclusion) }
ensures { sequent_correct result }
ensures { match s.context with FOFCons _ gamma -> result.context = gamma
| _ -> false end }
ensures { result.conclusion = s.conclusion }
= match s.context with FOFCons phis gamma ->
{ demo = Skolemization s.demo phis f ;
context = gamma ;
conclusion = s.conclusion }
| _ -> absurd end
let ghost conjunction_commutative (s:sequent 'ls 'b) : sequent 'ls 'b
requires { sequent_correct s }
requires { match s.conclusion with And _ _ -> true | _ -> false end }
ensures { sequent_correct result }
ensures { result.context = s.context }
ensures { match s.conclusion with And phi1 phi2 ->
result.conclusion = And phi2 phi1 | _ -> false end }
= conjunction (conjunction_right s) (conjunction_left s)
let ghost equiv_reflexive (gamma:fo_formula_list 'ls 'b)
(phi:fo_formula 'ls 'b) : sequent 'ls 'b
ensures { sequent_correct result }
ensures { result.context = gamma }
ensures { result.conclusion = equiv phi phi }
=
let u = make_classical gamma phi in
conjunction u u
(*
let ghost imply_or_morphism (gamma:fo_formula_list 'ls 'b)
(phi1 phi2 phi3 phi4:fo_formula 'ls 'b)
(d1 d2:demonstration 'ls 'b) : demonstration 'ls 'b
requires { deducible_from gamma (imply phi1 phi3) d1 }
requires { deducible_from gamma (imply phi2 phi4) d2 }
ensures { deducible_from gamma
(imply (Or phi1 phi2) (Or phi3 phi4)) result }
=
let o34 = Or phi3 phi4 in
let o12 = Or phi1 phi2 in
let gamma12 = FOFCons o12 gamma in
let gamma121 = FOFCons phi1 gamma12 in
let gamma122 = FOFCons phi2 gamma12 in
let d1 = modus_ponens gamma121 phi1 phi3
(weaken gamma gamma121 (imply phi1 phi3) d1)
(make_axiom gamma121 phi1) in
let d2 = modus_ponens gamma122 phi2 phi4
(weaken gamma gamma122 (imply phi2 phi4) d2)
(make_axiom gamma122 phi2) in
disjunction_elimination gamma12 phi1 phi2 o34
(make_axiom gamma12 o12)
(make_abstraction gamma12 phi1 o34
(disjunction_left gamma121 phi3 phi4 d1))
(make_abstraction gamma12 phi2 o34
(disjunction_right gamma122 phi3 phi4 d2))
let ghost equiv_or_morphism (gamma:fo_formula_list 'ls 'b)
(phi1 phi2 phi3 phi4:fo_formula 'ls 'b)
(d1 d2:demonstration 'ls 'b) : demonstration 'ls 'b
requires { deducible_from gamma (equiv phi1 phi3) d1 }
requires { deducible_from gamma (equiv phi2 phi4) d2 }
ensures { deducible_from gamma
(equiv (Or phi1 phi2) (Or phi3 phi4)) result }
=
let (o12,o34) = (Or phi1 phi2,Or phi3 phi4) in
let way1 = imply_or_morphism gamma phi1 phi2 phi3 phi4
(conjunction_left gamma (imply phi1 phi3) (imply phi3 phi1) d1)
(conjunction_left gamma (imply phi2 phi4) (imply phi4 phi2) d2) in
let way2 = imply_or_morphism gamma phi3 phi4 phi1 phi2
(conjunction_right gamma (imply phi1 phi3) (imply phi3 phi1) d1)
(conjunction_right gamma (imply phi2 phi4) (imply phi4 phi2) d2) in
conjunction (imply o12 o34) (imply o34 o12) way1 way2
*)
(*
let ghost disjunction_commutation (gamma:fo_formula_list 'ls 'b)
(phi1 phi2:fo_formula 'ls 'b) (d:demonstration 'ls 'b) :
demonstration 'ls 'b
requires { deducible_from gamma (Or phi1 phi2) d }
ensures { deducible_from gamma (Or phi2 phi1) result }
=
let o = Or phi2 phi1 in
let (gamma1,gamma2) = (FOFCons phi1 gamma,FOFCons phi2 gamma) in
let d1 = disjunction_right gamma1 phi2 phi1 (make_axiom gamma1 phi1) in
let d2 = disjunction_left gamma2 phi2 phi1 (make_axiom gamma2 phi2) in
let d1 = make_abstraction gamma phi1 o d1 in
let d2 = make_abstraction gamma phi2 o d2 in
disjunction_elimination gamma phi1 phi2 o d d1 d2
let ghost disjunction_associative_r (gamma:fo_formula_list 'ls 'b)
(phi1 phi2 phi3:fo_formula 'ls 'b) (d:demonstration 'ls 'b) :
demonstration 'ls 'b
requires { deducible_from gamma (Or (Or phi1 phi2) phi3) d }
ensures { deducible_from gamma (Or phi1 (Or phi2 phi3)) result }
=
let o12 = Or phi1 phi2 in
let o23 = Or phi2 phi3 in
let ob = Or o12 phi3 in
let oa = Or phi1 o23 in
let gamma12 = FOFCons o12 gamma in
let gamma1 = FOFCons phi1 gamma12 in
let gamma2 = FOFCons phi2 gamma12 in
let gamma3 = FOFCons phi3 gamma in
let d1 = disjunction_left gamma1 phi1 o23
(make_axiom gamma1 phi1) in
let d2 = disjunction_right gamma2 phi1 o23
(disjunction_left gamma2 phi2 phi3 (make_axiom gamma2 phi2)) in
let d1 = make_abstraction gamma12 phi1 oa d1 in
let d2 = make_abstraction gamma12 phi2 oa d2 in
let d12 = disjunction_elimination gamma12 phi1 phi2 oa
(make_axiom gamma12 o12) d1 d2 in
let d3 = disjunction_right gamma3 phi1 o23
(disjunction_right gamma3 phi2 phi3 (make_axiom gamma3 phi3)) in
let d12 = make_abstraction gamma o12 oa d12 in
let d3 = make_abstraction gamma phi3 oa d3 in
disjunction_elimination gamma o12 phi3 oa d d12 d3
let ghost disjunction_associative_l (gamma:fo_formula_list 'ls 'b)
(phi1 phi2 phi3:fo_formula 'ls 'b) (d:demonstration 'ls 'b) :
demonstration 'ls 'b
requires { deducible_from gamma (Or phi1 (Or phi2 phi3)) d }
ensures { deducible_from gamma (Or (Or phi1 phi2) phi3) result }
=
let o23 = Or phi2 phi3 in
let o12 = Or phi1 phi2 in
let ob = Or phi1 o23 in
let oa = Or o12 phi3 in
let gamma23 = FOFCons o23 gamma in
let gamma3 = FOFCons phi3 gamma23 in
let gamma2 = FOFCons phi2 gamma23 in
let gamma1 = FOFCons phi1 gamma in
let d3 = disjunction_right gamma3 o12 phi3
(make_axiom gamma3 phi3) in
let d2 = disjunction_left gamma2 o12 phi3
(disjunction_right gamma2 phi1 phi2 (make_axiom gamma2 phi2)) in
let d3 = make_abstraction gamma23 phi3 oa d3 in
let d2 = make_abstraction gamma23 phi2 oa d2 in
let d23 = disjunction_elimination gamma23 phi2 phi3 oa
(make_axiom gamma23 o23) d2 d3 in
let d1 = disjunction_left gamma1 o12 phi3
(disjunction_left gamma1 phi1 phi2 (make_axiom gamma1 phi1)) in
let d23 = make_abstraction gamma o23 oa d23 in
let d1 = make_abstraction gamma phi1 oa d1 in
disjunction_elimination gamma phi1 o23 oa d d1 d23
*)
(*
let ghost double_negation_elimination (gamma:fo_formula_list 'ls 'b)
(phi:fo_formula 'ls 'b) (d:demonstration 'ls 'b) :
demonstration 'ls 'b
requires { deducible_from gamma (Not (Not phi)) d }
ensures { deducible_from gamma phi result }
=
let nphi = Not phi in
let nnphi = Not nphi in
let d0 = make_classical gamma phi in
let d2 = disjunction_left gamma nnphi phi d in
disjunction_elimination gamma nphi phi phi d0 d2 d0
*)
(*let ghost false_neutral_left_disjunction (gamma:fo_formula_list 'ls 'b)
(phi:fo_formula 'ls 'b) (d:demonstration 'ls 'b) :
demonstration 'ls 'b
requires { deducible_from gamma (Or FFalse phi) d }
ensures { deducible_from gamma phi result }
=
let d1 = Abstraction (ExFalso Axiom) FFalse phi in
let d2 = Abstraction Axiom phi phi in
DisjunctionElim d d1 d2 FFalse phi
let ghost false_neutral_right_disjunction (gamma:fo_formula_list 'ls 'b)
(phi:fo_formula 'ls 'b) (d:demonstration 'ls 'b) :
demonstration 'ls 'b
requires { deducible_from gamma (Or phi FFalse) d }
ensures { deducible_from gamma phi result }
=
false_neutral_left_disjunction gamma phi
(disjunction_commutation gamma phi FFalse d)*)
(*(* Now we do not need the demonstration object anymore. *)
let lemma entail_axiom (gamma:fo_formula_list 'ls 'b)
(phi:fo_formula 'ls 'b) : unit
requires { formula_list_mem phi gamma }
ensures { entail gamma phi }
=
()
let lemma entail_modus_ponens (gamma:fo_formula_list 'ls 'b)
(phi1 phi2:fo_formula 'ls 'b) : unit
requires { entail gamma phi1 /\ entail gamma (Or (Not phi1) phi2) }
ensures { entail gamma phi2 }
=
assert { forall d1 d2:demonstration 'ls 'b.
deducible_from gamma phi1 d1 /\
deducible_from gamma (Or (Not phi1) phi2) d2 ->
deducible_from gamma phi2 (ModusPonens d1 d2 phi1) }
let lemma entail_abstraction (gamma:fo_formula_list 'ls 'b)
(phi1 phi2:fo_formula 'ls 'b) : unit
requires { entail (FOFCons phi1 gamma) phi2 }
ensures { entail gamma (Or (Not phi1) phi2) }
=
assert { forall d:demonstration 'ls 'b.
deducible_from (FOFCons phi1 gamma) phi2 d ->
deducible_from gamma (Or (Not phi1) phi2) (Abstraction d phi1 phi2) }
let lemma entail_conjunction (gamma:fo_formula_list 'ls 'b)
(phi1 phi2:fo_formula 'ls 'b) : unit
ensures { entail gamma (And phi1 phi2)
<-> entail gamma phi1 /\ entail gamma phi2 }
=
assert { forall d:demonstration 'ls 'b.
deducible_from gamma (And phi1 phi2) d ->
deducible_from gamma phi1 (ConjunctionLeft d phi2) /\
deducible_from gamma phi2 (ConjunctionRight d phi1) } ;
assert { forall d1 d2:demonstration 'ls 'b.
deducible_from gamma phi1 d1 /\
deducible_from gamma phi2 d2 ->
deducible_from gamma (And phi1 phi2) (ConjunctionIntro d1 phi1 d2 phi2) }
let lemma entail_disjunction_left (gamma:fo_formula_list 'ls 'b)
(phi1 phi2:fo_formula 'ls 'b)
requires { entail gamma phi1 }
ensures { entail gamma (Or phi1 phi2) }
=
assert { forall d:demonstration 'ls 'b.
deducible_from gamma phi1 d ->
deducible_from gamma (Or phi1 phi2) (DisjunctionLeft d phi1 phi2) }
let lemma entail_disjunction_right (gamma:fo_formula_list 'ls 'b)
(phi1 phi2:fo_formula 'ls 'b)
requires { entail gamma phi2 }
ensures { entail gamma (Or phi1 phi2) }
=
assert { forall d:demonstration 'ls 'b.
deducible_from gamma phi2 d ->
deducible_from gamma (Or phi1 phi2) (DisjunctionRight d phi1 phi2) }
let lemma entail_disjunction_elim (gamma:fo_formula_list 'ls 'b)
(phi1 phi2 phi3:fo_formula 'ls 'b)
requires { entail gamma (Or phi1 phi2) }
requires { entail gamma (Or (Not phi1) phi3) }
requires { entail gamma (Or (Not phi2) phi3) }
ensures { entail gamma phi3 }
=
assert { forall d1 d2 d3:demonstration 'ls 'b.
deducible_from gamma (Or phi1 phi2) d1 /\
deducible_from gamma (Or (Not phi1) phi3) d2 /\
deducible_from gamma (Or (Not phi2) phi3) d3 ->
deducible_from gamma phi3 (DisjunctionElim d1 d2 d3 phi1 phi2) }
let lemma entail_universal_instantiation (gamma:fo_formula_list 'ls 'b)
(phi:fo_formula 'ls (option 'b)) (t:fo_term 'ls 'b)
requires { entail gamma (Forall phi) }
ensures { entail gamma (subst_fo_formula phi
(ocase subst_id_fo_term t)) }
=
assert { forall d:demonstration 'ls 'b.
deducible_from gamma (Forall phi) d ->
deducible_from gamma (subst_fo_formula phi
(ocase subst_id_fo_term t)) (UniversalInstantiation d phi t) }
let lemma entail_instantiation (gamma:fo_formula_list 'ls 'b)
(phi:fo_formula 'ls 'b) (x:'b) (t:fo_term 'ls 'b)
requires { entail gamma phi }
ensures { let s = subst_id_fo_term[x<-t] in
entail (subst_fo_formula_list gamma s) (subst_fo_formula phi s) }
=
let s = subst_id_fo_term[x<-t] in
assert { forall d:demonstration 'ls 'b.
deducible_from gamma phi d ->
deducible_from (subst_fo_formula_list gamma s)
(subst_fo_formula phi s) (Instantiation d gamma phi x t) }
let lemma entail_existential_introduction (gamma:fo_formula_list 'ls 'b)
(phi:fo_formula 'ls (option 'b)) (t:fo_term 'ls 'b)
requires { entail gamma (subst_fo_formula phi
(ocase subst_id_fo_term t)) }
ensures { entail gamma (Exists phi) }
=
assert { forall d:demonstration 'ls 'b.
deducible_from gamma (subst_fo_formula phi
(ocase subst_id_fo_term t)) d ->
deducible_from gamma (Exists phi) (ExistentialIntroduction d phi t) }
let lemma entail_existential_elimination (gamma:fo_formula_list 'ls 'b)
(phi1 phi2:fo_formula 'ls (option 'b))
requires { entail gamma (Forall (Or (Not phi1) phi2)) }
requires { entail gamma (Exists phi1) }
ensures { entail gamma (Exists phi2) }
=
assert { forall d1 d2:demonstration 'ls 'b.
deducible_from gamma (Forall (Or (Not phi1) phi2)) d1 /\
deducible_from gamma (Exists phi1) d2 ->
deducible_from gamma (Exists phi2)
(ExistentialElimination d1 d2 phi1 phi2) }
let lemma disjunction_commutative (gamma:fo_formula_list 'ls 'b)
(phi1 phi2:fo_formula 'ls 'b)
requires { entail gamma (Or phi1 phi2) }
ensures { entail gamma (Or phi2 phi1) }
=
entail_axiom (FOFCons phi1 gamma) phi1 ;
entail_axiom (FOFCons phi2 gamma) phi2 ;
entail_disjunction_right (FOFCons phi1 gamma) phi2 phi1 ;
entail_disjunction_left (FOFCons phi2 gamma) phi2 phi1 ;
entail_disjunction_elim gamma phi1 phi2 (Or phi2 phi1)*)
*)
end
|