1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
|
module Types
use Firstorder_formula_impl.Types
use Firstorder_formula_list_impl.Types
use Firstorder_term_impl.Types
use list.List
use Functions.Func
use Firstorder_semantics.Sem
(* ghost field: explicitly to get rid of the existential. *)
type skolemization_return 'st = {
skolemized : nlimpl_fo_formula ;
skolem_bound : int ;
free_var_list : list int ;
ghost model_transformer : (model int 'st) -> (model int 'st) ;
}
type skolemization_list_return 'st = {
skolemized_l : nlimpl_fo_formula_list ;
skolem_bound_l : int ;
ghost model_transformer_l : (model int 'st) -> (model int 'st) ;
}
type skolemization_env_return 'st = {
skolemized_fv_list : nlimpl_fo_term_list ;
ghost skolem_env : (list 'st) -> (int -> 'st) ;
}
end
module Logic
use Firstorder_formula_spec.Spec
use Firstorder_term_spec.Spec
use Firstorder_symbol_spec.Spec
use Firstorder_formula_list_spec.Spec
use Functions.Func
use option.Option
use OptionFuncs.Funcs
predicate is_atom (phi:fo_formula 'ls 'b) = match phi with
| PApp _ _ -> true
| Not (PApp _ _) -> true
| _ -> false
end
(* Negational normal form. *)
predicate is_nnf (phi:fo_formula 'ls 'b) = match phi with
| Not (PApp _ _) -> true
| Not _ -> false
| PApp _ _ -> true
| And a b -> is_nnf a /\ is_nnf b
| Or a b -> is_nnf a /\ is_nnf b
| Forall a -> is_nnf a
| Exists a -> is_nnf a
| FTrue -> true
| FFalse -> true
end
predicate is_nnf_list (phis:fo_formula_list 'ls 'b) = match phis with
| FOFNil -> true
| FOFCons x q -> is_nnf x /\ is_nnf_list q
end
let rec lemma is_nnf_subst (phi:fo_formula 'ls 'b) (f:'b -> (fo_term 'ls 'c)) : unit
requires { is_nnf phi }
ensures { is_nnf (subst_fo_formula phi subst_id_symbol f) }
variant { size_fo_formula phi }
=
match phi with
| Not (PApp p l) -> assert {
subst_fo_formula phi subst_id_symbol f =
Not (subst_fo_formula (PApp p l) subst_id_symbol f) =
Not (PApp (subst_symbol p subst_id_symbol)
(subst_fo_term_list l subst_id_symbol f)) }
| Not _ -> absurd
| PApp _ _ -> ()
| And a b -> is_nnf_subst a f ; is_nnf_subst b f
| Or a b -> is_nnf_subst a f ; is_nnf_subst b f
| Forall a -> is_nnf_subst a (olifts_fo_term f) ;
assert { subst_fo_formula phi subst_id_symbol f =
Forall (subst_fo_formula a subst_id_symbol (olifts_fo_term f)) }
| Exists a -> is_nnf_subst a (olifts_fo_term f) ;
assert { subst_fo_formula phi subst_id_symbol f =
Exists (subst_fo_formula a subst_id_symbol (olifts_fo_term f)) }
| FTrue -> ()
| FFalse -> ()
end
let lemma is_nnf_renaming (phi:fo_formula 'ls 'b) (f:'b -> 'c) : unit
requires { is_nnf phi }
ensures { is_nnf (rename_fo_formula phi identity f) }
=
is_nnf_subst phi (rcompose f subst_id_fo_term)
(* Simplified formula. *)
predicate is_simpl (phi:fo_formula 'ls 'b) = match phi with
| Not u -> is_simpl u
| PApp _ _ -> true
| And a b -> is_simpl a /\ is_simpl b
| Or a b -> is_simpl a /\ is_simpl b
| Forall a -> is_simpl a
| Exists a -> is_simpl a
| FTrue -> false
| FFalse -> false
end
predicate is_simpl_list (phis:fo_formula_list 'ls 'b) = match phis with
| FOFNil -> true
| FOFCons x q -> is_simpl x /\ is_simpl_list q
end
let rec lemma is_simpl_subst (phi:fo_formula 'ls 'b) (f:'b -> (fo_term 'ls 'c)) : unit
requires { is_simpl phi }
ensures { is_simpl (subst_fo_formula phi subst_id_symbol f) }
variant { size_fo_formula phi }
=
match phi with
| Not u -> is_simpl_subst u f ;
assert { subst_fo_formula phi subst_id_symbol f =
Not (subst_fo_formula u subst_id_symbol f) }
| PApp _ _ -> ()
| And a b -> is_simpl_subst a f ; is_simpl_subst b f
| Or a b -> is_simpl_subst a f ; is_simpl_subst b f
| Forall a -> is_simpl_subst a (olifts_fo_term f) ;
assert { subst_fo_formula phi subst_id_symbol f =
Forall (subst_fo_formula a subst_id_symbol (olifts_fo_term f)) }
| Exists a -> is_simpl_subst a (olifts_fo_term f) ;
assert { subst_fo_formula phi subst_id_symbol f =
Exists (subst_fo_formula a subst_id_symbol (olifts_fo_term f)) }
| FTrue -> absurd
| FFalse -> absurd
end
let lemma is_simpl_renaming (phi:fo_formula 'ls 'b) (f:'b -> 'c) : unit
requires { is_simpl phi }
ensures { is_simpl (rename_fo_formula phi identity f) }
=
is_simpl_subst phi (rcompose f subst_id_fo_term)
(* Simplified formula, + true/false allowed at top. *)
predicate is_simpl_extended (phi:fo_formula 'ls 'b) =
is_simpl phi \/ phi = FTrue \/ phi = FFalse
lemma is_simpl_extended_renaming :
forall phi:fo_formula 'ls 'b,f:'b -> 'c.
is_simpl_extended phi -> is_simpl_extended (rename_fo_formula phi identity f)
predicate no_existential (phi:fo_formula 'ls 'b) = match phi with
| Not u -> no_existential u
| PApp _ _ -> true
| And a b -> no_existential a /\ no_existential b
| Or a b -> no_existential a /\ no_existential b
| Forall a -> no_existential a
| Exists _ -> false
| FTrue -> true
| FFalse -> true
end
predicate no_existential_list (phis:fo_formula_list 'ls 'b) = match phis with
| FOFNil -> true
| FOFCons x q -> no_existential x /\ no_existential_list q
end
let rec lemma no_existential_subst (phi:fo_formula 'ls 'b) (f:'b -> (fo_term 'ls 'c)) : unit
requires { no_existential phi }
ensures { no_existential (subst_fo_formula phi subst_id_symbol f) }
variant { size_fo_formula phi }
=
match phi with
| Not u -> no_existential_subst u f ;
assert { subst_fo_formula phi subst_id_symbol f =
Not (subst_fo_formula u subst_id_symbol f) }
| PApp _ _ -> ()
| And a b -> no_existential_subst a f ; no_existential_subst b f
| Or a b -> no_existential_subst a f ; no_existential_subst b f
| Forall a -> no_existential_subst a (olifts_fo_term f) ;
assert { subst_fo_formula phi subst_id_symbol f =
Forall (subst_fo_formula a subst_id_symbol (olifts_fo_term f)) }
| Exists _ -> absurd
| FTrue -> ()
| FFalse -> ()
end
let lemma no_existential_renaming (phi:fo_formula 'ls 'b) (f:'b -> 'c) : unit
requires { no_existential phi }
ensures { no_existential (rename_fo_formula phi identity f) }
=
no_existential_subst phi (rcompose f subst_id_fo_term)
(* Skolemization environment. *)
use Choice.Choice
use list.List
(* Hack to force possibility of instantiation of extend_env
definition axiom ! *)
function extend_env_selection (g:(list 'st) -> ('b -> 'st))
(x:'b) (y:'b) (z:'st) (q:list 'st) : 'st = if x = y then z else g q x
(* Abstraction-definition axiom :
function extend_env (g:(list 'st) -> ('b -> 'st) (y:'b) :
(list 'st) -> ('b -> 'st) =
(\ l:list 'st. (\ x:option 'b. match l with
| Cons z q -> extend_env_selection g x y z q
| Nil -> default ) ) *)
function extend_env (g:(list 'st) -> ('b -> 'st)) (y:'b) :
(list 'st) -> ('b -> 'st)
axiom extend_env_def : forall g:(list 'st) -> ('b -> 'st),y:'b,
l:list 'st,x:'b. extend_env g y l x =
match l with
| Cons z q -> extend_env_selection g x y z q
| Nil -> default
end
end
module Impl
use Types
use Logic
use Functions.Func
use import set.Set as S
use Firstorder_formula_spec.Spec
use Firstorder_formula_impl.Types
use Firstorder_formula_impl.Logic
use Firstorder_formula_impl.Impl
use Firstorder_formula_list_spec.Spec
use Firstorder_formula_list_impl.Impl
use Firstorder_formula_list_impl.Logic
use Firstorder_formula_list_impl.Types
use Firstorder_term_spec.Spec
use Firstorder_term_impl.Impl
use Firstorder_term_impl.Logic
use Firstorder_term_impl.Types
use Firstorder_symbol_spec.Spec
use Firstorder_symbol_impl.Impl
use Firstorder_symbol_impl.Logic
use Firstorder_symbol_impl.Types
use list.List
use option.Option
use OptionFuncs.Funcs
use Firstorder_semantics.Sem
use bool.Bool
use list.Mem
use int.Int
exception Unsat
let smart_and (phi1 phi2:nlimpl_fo_formula) (ghost fvp:set int) (ghost st:'st) : nlimpl_fo_formula
requires { nlimpl_fo_formula_ok phi1 }
requires { forall x:int. is_fo_term_free_var_in_fo_formula x
phi1.model_fo_formula_field -> S.mem x fvp }
requires { nlimpl_fo_formula_ok phi2 }
requires { forall x:int. is_fo_term_free_var_in_fo_formula x
phi2.model_fo_formula_field -> S.mem x fvp }
requires { is_simpl_extended phi1.model_fo_formula_field }
requires { is_simpl_extended phi2.model_fo_formula_field }
ensures { is_simpl_extended result.model_fo_formula_field }
ensures { forall m:model int 'st,rho:int -> 'st.
formula_semantic result.model_fo_formula_field m rho <->
formula_semantic phi1.model_fo_formula_field m rho /\
formula_semantic phi2.model_fo_formula_field m rho }
ensures { is_nnf phi1.model_fo_formula_field /\
is_nnf phi2.model_fo_formula_field ->
is_nnf result.model_fo_formula_field }
ensures { nlimpl_fo_formula_ok result }
ensures { forall x:int. is_fo_term_free_var_in_fo_formula x
result.model_fo_formula_field -> S.mem x fvp }
=
let phi1m = phi1.model_fo_formula_field in
let phi2m = phi2.model_fo_formula_field in
match destruct_fo_formula phi1 with
| NLC_FFalse -> phi1
| NLC_FTrue -> phi2
| _ -> assert { phi1m <> FTrue } ; assert { phi1m <> FFalse } ;
match destruct_fo_formula phi2 with
| NLC_FFalse -> phi2
| NLC_FTrue -> phi1
| _ -> assert { phi2m <> FTrue } ; assert { phi2m <> FFalse } ;
assert { is_simpl phi1m /\ is_simpl phi2m } ;
let phi0 = construct_fo_formula (NLC_And phi1 phi2) in
assert { phi0.model_fo_formula_field = And phi1m phi2m } ;
phi0
end
end
let smart_or (phi1 phi2:nlimpl_fo_formula) (ghost fvp:set int) (ghost st:'st) : nlimpl_fo_formula
requires { nlimpl_fo_formula_ok phi1 }
requires { forall x:int. is_fo_term_free_var_in_fo_formula x
phi1.model_fo_formula_field -> S.mem x fvp }
requires { nlimpl_fo_formula_ok phi2 }
requires { forall x:int. is_fo_term_free_var_in_fo_formula x
phi2.model_fo_formula_field -> S.mem x fvp }
requires { is_simpl_extended phi1.model_fo_formula_field }
requires { is_simpl_extended phi2.model_fo_formula_field }
ensures { is_simpl_extended result.model_fo_formula_field }
ensures { forall m:model int 'st,rho:int -> 'st.
formula_semantic result.model_fo_formula_field m rho <->
formula_semantic phi1.model_fo_formula_field m rho \/
formula_semantic phi2.model_fo_formula_field m rho }
ensures { is_nnf phi1.model_fo_formula_field /\
is_nnf phi2.model_fo_formula_field ->
is_nnf result.model_fo_formula_field }
ensures { nlimpl_fo_formula_ok result }
ensures { forall x:int. is_fo_term_free_var_in_fo_formula x
result.model_fo_formula_field -> S.mem x fvp }
=
let phi1m = phi1.model_fo_formula_field in
let phi2m = phi2.model_fo_formula_field in
match destruct_fo_formula phi1 with
| NLC_FTrue -> phi1
| NLC_FFalse -> phi2
| _ -> assert { phi1m <> FTrue } ; assert { phi1m <> FFalse } ;
match destruct_fo_formula phi2 with
| NLC_FTrue -> phi2
| NLC_FFalse -> phi1
| _ -> assert { phi2m <> FTrue } ; assert { phi2m <> FFalse } ;
assert { is_simpl phi1m /\ is_simpl phi2m } ;
let phi0 = construct_fo_formula (NLC_Or phi1 phi2) in
assert { phi0.model_fo_formula_field = Or phi1m phi2m } ;
phi0
end
end
let smart_forall (x:int) (phi:nlimpl_fo_formula) (ghost fvp:set int) (ghost st:'st) : nlimpl_fo_formula
requires { nlimpl_fo_formula_ok phi }
requires { forall y:int. is_fo_term_free_var_in_fo_formula y
phi.model_fo_formula_field -> S.mem y fvp \/ y = x }
requires { is_simpl_extended phi.model_fo_formula_field }
ensures { is_simpl_extended result.model_fo_formula_field }
ensures { forall m:model int 'st,rho:int -> 'st.
formula_semantic result.model_fo_formula_field m rho <->
(forall xm:'st.
let r = rcompose (some[x <- None]) (ocase rho xm) in
formula_semantic phi.model_fo_formula_field m r) }
ensures { is_nnf phi.model_fo_formula_field ->
is_nnf result.model_fo_formula_field }
ensures { nlimpl_fo_formula_ok result }
ensures { forall y:int. is_fo_term_free_var_in_fo_formula y
result.model_fo_formula_field -> S.mem y fvp }
=
let phim = phi.model_fo_formula_field in
match destruct_fo_formula phi with
| NLC_FFalse -> assert { phim = FFalse &&
forall m:model int 'st,rho:int -> 'st.
not(formula_semantic phim m rho) } ;
phi
| NLC_FTrue -> phi
| _ -> assert { phim <> FTrue /\ phim <> FFalse && is_simpl phim } ;
let phi0 = construct_fo_formula (NLC_Forall x phi) in
let phi0m = phi0.model_fo_formula_field in
let ghost phi1m = rename_fo_formula phim identity (some[x <- None]) in
assert { phi0m = Forall phi1m } ;
assert { forall xf:int.
(forall y:int. is_fo_term_free_var_in_fo_formula y phim /\
eval (some[x<-None]) y = Some xf -> y <> x &&
Some xf = Some y && xf = y) && is_fo_term_free_var_in_fo_formula xf phi0m ->
is_fo_term_free_var_in_fo_formula (Some xf) phi1m &&
(exists y:int. is_fo_term_free_var_in_fo_formula y phim /\
eval (some[x <- None]) y = Some xf) && is_fo_term_free_var_in_fo_formula xf phim
&& xf <> x && S.mem xf fvp } ;
phi0
end
let smart_exists (x:int) (phi:nlimpl_fo_formula) (ghost fvp:set int) (ghost st:'st) : nlimpl_fo_formula
requires { nlimpl_fo_formula_ok phi }
requires { forall y:int. is_fo_term_free_var_in_fo_formula y phi.model_fo_formula_field
-> S.mem y fvp \/ y = x }
requires { is_simpl_extended phi.model_fo_formula_field }
ensures { is_simpl_extended result.model_fo_formula_field }
ensures { forall m:model int 'st,rho:int -> 'st.
formula_semantic result.model_fo_formula_field m rho <->
(exists xm:'st.
let r = rcompose (some[x <- None]) (ocase rho xm) in
formula_semantic phi.model_fo_formula_field m r) }
ensures { is_nnf phi.model_fo_formula_field ->
is_nnf result.model_fo_formula_field }
ensures { nlimpl_fo_formula_ok result }
ensures { forall y:int. is_fo_term_free_var_in_fo_formula y result.model_fo_formula_field
-> S.mem y fvp }
=
let phim = phi.model_fo_formula_field in
match destruct_fo_formula phi with
| NLC_FFalse -> phi
| NLC_FTrue -> assert { phim = FTrue /\
forall m:model int 'st,rho:int -> 'st.
formula_semantic phim m rho } ;
phi
| _ -> assert { phim <> FTrue /\ phim <> FFalse && is_simpl phim } ;
let phi0 = construct_fo_formula (NLC_Exists x phi) in
let phi0m = phi0.model_fo_formula_field in
let ghost phi1m = rename_fo_formula phim identity (some[x <- None]) in
assert { phi0m = Exists phi1m } ;
assert { forall xf:int.
(forall y:int. is_fo_term_free_var_in_fo_formula y phim /\
eval (some[x<-None]) y = Some xf -> y <> x &&
Some xf = Some y && xf = y) && (is_fo_term_free_var_in_fo_formula xf phi0m ->
is_fo_term_free_var_in_fo_formula (Some xf) phi1m &&
(exists y:int. is_fo_term_free_var_in_fo_formula y phim /\
eval (some[x <- None]) y = Some xf) && is_fo_term_free_var_in_fo_formula xf phim
&& xf <> x && S.mem xf fvp) && (is_fo_term_free_var_in_fo_formula xf phi0m ->
S.mem xf fvp) } ;
phi0
end
(* Put in negational normal form and
simplify formula (e.g. true/false removal/propagation to toplevel) *)
let rec nnf_simpl (phi:nlimpl_fo_formula) (ghost fvp:set int) (ghost st:'st) : nlimpl_fo_formula
requires { nlimpl_fo_formula_ok phi }
requires { forall x:int.
is_fo_term_free_var_in_fo_formula x phi.model_fo_formula_field -> S.mem x fvp }
ensures { nlimpl_fo_formula_ok result }
ensures { forall x:int.
is_fo_term_free_var_in_fo_formula x result.model_fo_formula_field -> S.mem x fvp }
ensures { forall m:model int 'st, rho:int -> 'st.
formula_semantic phi.model_fo_formula_field m rho <->
formula_semantic result.model_fo_formula_field m rho }
ensures { is_nnf result.model_fo_formula_field }
ensures { is_simpl_extended result.model_fo_formula_field }
variant { size_fo_formula phi.model_fo_formula_field }
=
let phim = phi.model_fo_formula_field in
match destruct_fo_formula phi with
| NLC_PApp p l -> phi
| NLC_Not phi' -> assert { forall x:int.
is_fo_term_free_var_in_fo_formula x phi'.model_fo_formula_field ->
is_fo_term_free_var_in_fo_formula x phim && S.mem x fvp } ;
nnf_neg_simpl phi' fvp st
| NLC_And phi1 phi2 -> let phi'1 = nnf_simpl phi1 fvp st in
let phi'2 = nnf_simpl phi2 fvp st in
smart_and phi'1 phi'2 fvp st
| NLC_Or phi1 phi2 -> let phi'1 = nnf_simpl phi1 fvp st in
let phi'2 = nnf_simpl phi2 fvp st in
smart_or phi'1 phi'2 fvp st
| NLC_FTrue -> phi
| NLC_FFalse -> phi
| NLC_Forall x phi0 ->
let phi0m = phi0.model_fo_formula_field in
let ghost phi1m = rename_fo_formula phi0m identity (some[x<-None]) in
assert { phim = Forall phi1m } ;
assert { phi0m = rename_fo_formula phi1m identity (ocase identity x) };
let ghost fvp' = S.add x fvp in
assert { forall xf:int.
(forall y:option int. is_fo_term_free_var_in_fo_formula y phi1m /\
ocase identity x y = xf -> match y with None -> x = xf && S.mem xf fvp'
| Some y -> y = xf && is_fo_term_free_var_in_fo_formula y phim &&
S.mem xf fvp && S.mem xf fvp' end && S.mem xf fvp') &&
(is_fo_term_free_var_in_fo_formula xf phi0m ->
(exists y:option int. is_fo_term_free_var_in_fo_formula y phi1m /\
ocase identity x y = xf) && S.mem xf fvp') &&
(is_fo_term_free_var_in_fo_formula xf phi0m -> S.mem xf fvp') };
let phi' = nnf_simpl phi0 fvp' st in
let phi'' = smart_forall x phi' fvp st in
phi''
| NLC_Exists x phi0 ->
let phi0m = phi0.model_fo_formula_field in
let ghost phi1m = rename_fo_formula phi0m identity (some[x<-None]) in
assert { phim = Exists phi1m } ;
assert { phi0m = rename_fo_formula phi1m identity (ocase identity x) };
let ghost fvp' = S.add x fvp in
assert { forall xf:int.
(forall y:option int. is_fo_term_free_var_in_fo_formula y phi1m /\
ocase identity x y = xf -> match y with None -> x = xf && S.mem xf fvp'
| Some y -> y = xf && is_fo_term_free_var_in_fo_formula y phim &&
S.mem xf fvp && S.mem xf fvp' end && S.mem xf fvp') &&
(is_fo_term_free_var_in_fo_formula xf phi0m ->
(exists y:option int. is_fo_term_free_var_in_fo_formula y phi1m /\
ocase identity x y = xf) && S.mem xf fvp') &&
(is_fo_term_free_var_in_fo_formula xf phi0m -> S.mem xf fvp') };
let phi' = nnf_simpl phi0 fvp' st in
let phi'' = smart_exists x phi' fvp st in
phi''
end
with nnf_neg_simpl (phi:nlimpl_fo_formula) (ghost fvp:set int) (ghost st:'st) : nlimpl_fo_formula
requires { nlimpl_fo_formula_ok phi }
requires { forall x:int. is_fo_term_free_var_in_fo_formula x
phi.model_fo_formula_field -> S.mem x fvp }
ensures { nlimpl_fo_formula_ok result }
ensures { forall x:int. is_fo_term_free_var_in_fo_formula x
result.model_fo_formula_field -> S.mem x fvp }
ensures { forall m:model int 'st, rho:int -> 'st.
formula_semantic phi.model_fo_formula_field m rho <->
not(formula_semantic result.model_fo_formula_field m rho) }
ensures { is_nnf result.model_fo_formula_field }
ensures { is_simpl_extended result.model_fo_formula_field }
variant { size_fo_formula phi.model_fo_formula_field }
=
let phim = phi.model_fo_formula_field in
match destruct_fo_formula phi with
| NLC_PApp p l -> construct_fo_formula (NLC_Not phi)
| NLC_Not phi' -> nnf_simpl phi' fvp st
| NLC_And phi1 phi2 -> let phi'1 = nnf_neg_simpl phi1 fvp st in
let phi'2 = nnf_neg_simpl phi2 fvp st in
smart_or phi'1 phi'2 fvp st
| NLC_Or phi1 phi2 -> let phi'1 = nnf_neg_simpl phi1 fvp st in
let phi'2 = nnf_neg_simpl phi2 fvp st in
smart_and phi'1 phi'2 fvp st
| NLC_FTrue -> construct_fo_formula NLC_FFalse
| NLC_FFalse -> construct_fo_formula NLC_FTrue
| NLC_Forall x phi0 ->
let phi0m = phi0.model_fo_formula_field in
let ghost phi1m = rename_fo_formula phi0m identity (some[x<-None]) in
assert { phim = Forall phi1m } ;
assert { phi0m = rename_fo_formula phi1m identity (ocase identity x) };
let ghost fvp' = S.add x fvp in
assert { forall xf:int.
(forall y:option int. is_fo_term_free_var_in_fo_formula y phi1m /\
ocase identity x y = xf -> match y with None -> x = xf && S.mem xf fvp'
| Some y -> y = xf && is_fo_term_free_var_in_fo_formula y phim &&
S.mem xf fvp && S.mem xf fvp' end && S.mem xf fvp') &&
(is_fo_term_free_var_in_fo_formula xf phi0m ->
(exists y:option int. is_fo_term_free_var_in_fo_formula y phi1m /\
ocase identity x y = xf) && S.mem xf fvp') &&
(is_fo_term_free_var_in_fo_formula xf phi0m -> S.mem xf fvp') };
let phi' = nnf_neg_simpl phi0 fvp' st in
let phi'' = smart_exists x phi' fvp st in
phi''
| NLC_Exists x phi0 ->
let phi0m = phi0.model_fo_formula_field in
let ghost phi1m = rename_fo_formula phi0m identity (some[x<-None]) in
assert { phim = Exists phi1m } ;
assert { phi0m = rename_fo_formula phi1m identity (ocase identity x) };
let ghost fvp' = S.add x fvp in
assert { forall xf:int.
(forall y:option int. is_fo_term_free_var_in_fo_formula y phi1m /\
ocase identity x y = xf -> match y with None -> x = xf && S.mem xf fvp'
| Some y -> y = xf && is_fo_term_free_var_in_fo_formula y phim &&
S.mem xf fvp && S.mem xf fvp' end && S.mem xf fvp') &&
(is_fo_term_free_var_in_fo_formula xf phi0m ->
(exists y:option int. is_fo_term_free_var_in_fo_formula y phi1m /\
ocase identity x y = xf) && S.mem xf fvp') &&
(is_fo_term_free_var_in_fo_formula xf phi0m -> S.mem xf fvp') };
let phi' = nnf_neg_simpl phi0 fvp' st in
let phi'' = smart_forall x phi' fvp st in
phi''
end
(* gnum : take care of eliminated starting points. *)
let rec nnf_simpl_list (phis:nlimpl_fo_formula_list) (gnum:int)
(ghost fvp:set int) (ghost st:'st) : (nlimpl_fo_formula_list,int)
requires { nlimpl_fo_formula_list_ok phis }
requires { forall x:int. is_fo_term_free_var_in_fo_formula_list x
phis.model_fo_formula_list_field -> S.mem x fvp }
returns { (rs,_) -> nlimpl_fo_formula_list_ok rs }
returns { (rs,_) -> forall x:int. is_fo_term_free_var_in_fo_formula_list x
rs.model_fo_formula_list_field -> S.mem x fvp }
returns { (rs,_) -> forall m:model int 'st,rho:int -> 'st.
formula_list_conj_semantic phis.model_fo_formula_list_field m rho <->
formula_list_conj_semantic rs.model_fo_formula_list_field m rho }
returns { (rs,_) -> is_nnf_list rs.model_fo_formula_list_field }
returns { (rs,_) -> is_simpl_list rs.model_fo_formula_list_field }
raises { Unsat -> forall m:model int 'st,rho:int -> 'st.
not(formula_list_conj_semantic phis.model_fo_formula_list_field m rho) }
variant { size_fo_formula_list phis.model_fo_formula_list_field }
=
let phism = phis.model_fo_formula_list_field in
match destruct_fo_formula_list phis with
| NLC_FOFNil -> (phis,gnum)
| NLC_FOFCons phi q ->
let phim = phi.model_fo_formula_field in
let qm = q.model_fo_formula_list_field in
assert { phism = FOFCons phim qm } ;
let (q',gnum') = nnf_simpl_list q (gnum-1) fvp st in
let phi' = nnf_simpl phi fvp st in
let phi'_m = phi'.model_fo_formula_field in
let q'_m = q'.model_fo_formula_list_field in
match destruct_fo_formula phi' with
| NLC_FTrue -> (q',if gnum > 0 then gnum' else gnum'+1)
| NLC_FFalse -> raise Unsat
| _ -> assert { is_simpl phi'.model_fo_formula_field } ;
let res = construct_fo_formula_list (NLC_FOFCons phi' q') in
let resm = res.model_fo_formula_list_field in
assert { resm = FOFCons phi'_m q'_m } ;
(res,gnum'+1)
end
end
use ISet.Logic
use ISet.Impl
use Choice.Choice
let rec term_free_vars (t:nlimpl_fo_term) (ghost fvp:set int) : list int
requires { nlimpl_fo_term_ok t }
requires { forall x:int. is_fo_term_free_var_in_fo_term x t.model_fo_term_field ->
S.mem x fvp }
ensures { forall x:int.
is_fo_term_free_var_in_fo_term x t.model_fo_term_field ->
mem x result }
ensures { forall x:int. mem x result -> S.mem x fvp }
ensures { iset_ok result }
variant { size_fo_term t.model_fo_term_field }
=
match destruct_fo_term t with
| NLCVar_fo_term x -> Cons x Nil
| NLC_App _ l -> term_list_free_vars l fvp
end
with term_list_free_vars (l:nlimpl_fo_term_list) (ghost fvp:set int): list int
requires { nlimpl_fo_term_list_ok l }
requires { forall x:int.
is_fo_term_free_var_in_fo_term_list x l.model_fo_term_list_field ->
S.mem x fvp }
ensures { forall x:int.
is_fo_term_free_var_in_fo_term_list x l.model_fo_term_list_field ->
mem x result }
ensures { forall x:int. mem x result -> S.mem x fvp }
ensures { iset_ok result }
variant { size_fo_term_list l.model_fo_term_list_field }
=
match destruct_fo_term_list l with
| NLC_FONil -> Nil
| NLC_FOCons t q -> merge (term_free_vars t fvp) (term_list_free_vars q fvp)
end
let rec skolem_parameters (l:list int) (acc:skolemization_env_return 'st)
(ghost fvp:set int) : skolemization_env_return 'st
requires { iset_ok l }
requires { forall x:int. mem x l -> S.mem x fvp }
requires { nlimpl_fo_term_list_ok acc.skolemized_fv_list }
requires { forall x:int. is_fo_term_free_var_in_fo_term_list x
acc.skolemized_fv_list.model_fo_term_list_field -> S.mem x fvp }
requires { forall x:int. not(mem x l /\
is_fo_term_free_var_in_fo_term_list x
acc.skolemized_fv_list.model_fo_term_list_field) }
requires { forall x:int,m:model int 'st,rho:int -> 'st.
is_fo_term_free_var_in_fo_term_list x
acc.skolemized_fv_list.model_fo_term_list_field ->
eval acc.skolem_env (term_list_semantic
acc.skolemized_fv_list.model_fo_term_list_field m rho) x =
rho x }
requires { forall f:int. not(is_symbol_free_var_in_fo_term_list f
acc.skolemized_fv_list.model_fo_term_list_field) }
ensures { nlimpl_fo_term_list_ok result.skolemized_fv_list }
ensures { forall x:int. is_fo_term_free_var_in_fo_term_list x
result.skolemized_fv_list.model_fo_term_list_field -> S.mem x fvp }
ensures { forall x:int,m:model int 'st,rho:int -> 'st.
mem x l \/ is_fo_term_free_var_in_fo_term_list x
acc.skolemized_fv_list.model_fo_term_list_field ->
eval result.skolem_env (term_list_semantic
result.skolemized_fv_list.model_fo_term_list_field m rho) x =
rho x }
ensures { forall x:int. is_fo_term_free_var_in_fo_term_list x
result.skolemized_fv_list.model_fo_term_list_field ->
mem x l \/ is_fo_term_free_var_in_fo_term_list x
acc.skolemized_fv_list.model_fo_term_list_field }
ensures { forall f:int. not(is_symbol_free_var_in_fo_term_list f
result.skolemized_fv_list.model_fo_term_list_field) }
variant { l }
=
match l with
| Nil -> acc
| Cons x q -> let accl = acc.skolemized_fv_list in
let skenv = acc.skolem_env in
let varx = construct_fo_term (NLCVar_fo_term x) in
let accl' = construct_fo_term_list (NLC_FOCons varx accl) in
let (acclm,accl'_m) = (accl.model_fo_term_list_field ,accl'.model_fo_term_list_field) in
assert { accl'_m = FOCons (Var_fo_term x) acclm } ;
let ghost skenv' = extend_env skenv x in
let acc' = {
skolemized_fv_list = accl' ;
skolem_env = skenv'
} in
skolem_parameters q acc' fvp
end
(* Not sufficient yet. *)
let rec skolemize (phi:nlimpl_fo_formula) (skb:int) (b:bool)
(ghost fvp:set int) : skolemization_return 'st
requires { nlimpl_fo_formula_ok phi }
requires { forall x:int. is_fo_term_free_var_in_fo_formula x
phi.model_fo_formula_field -> S.mem x fvp }
requires { is_simpl phi.model_fo_formula_field }
requires { is_nnf phi.model_fo_formula_field }
requires { forall ls:int.
is_symbol_free_var_in_fo_formula ls phi.model_fo_formula_field -> ls < skb }
ensures { nlimpl_fo_formula_ok result.skolemized }
ensures { forall x:int. is_fo_term_free_var_in_fo_formula x
result.skolemized.model_fo_formula_field -> S.mem x fvp }
ensures { result.skolem_bound >= skb }
ensures { forall ls:int.
is_symbol_free_var_in_fo_formula ls result.skolemized.model_fo_formula_field ->
ls < result.skolem_bound }
ensures { is_nnf result.skolemized.model_fo_formula_field }
ensures { is_simpl result.skolemized.model_fo_formula_field }
ensures { no_existential result.skolemized.model_fo_formula_field }
ensures { forall m:model int 'st, rho:int -> 'st.
formula_semantic phi.model_fo_formula_field m rho ->
formula_semantic result.skolemized.model_fo_formula_field
(eval result.model_transformer m) rho }
(* Completeness concern.
ensures { forall m:model int 'st, rho:int -> 'st.
formula_semantic result.skolemized.model_fo_formula_field m rho ->
formula_semantic phi.model_fo_formula_field m rho
*)
ensures { forall m:model int 'st, ls:int.
ls < skb -> eval m.interp_fun ls =
eval (eval result.model_transformer m).interp_fun ls }
ensures { forall m:model int 'st.
m.interp_pred = (eval result.model_transformer m).interp_pred }
ensures { forall x:int. b = True ->
is_fo_term_free_var_in_fo_formula x result.skolemized.model_fo_formula_field ->
mem x result.free_var_list }
ensures { iset_ok result.free_var_list }
ensures { forall x:int. b = True -> mem x result.free_var_list -> S.mem x fvp }
variant { size_fo_formula phi.model_fo_formula_field }
=
let phim = phi.model_fo_formula_field in
match destruct_fo_formula phi with
| NLC_PApp _ l -> { skolemized = phi ;
skolem_bound = skb ;
model_transformer = identity ;
free_var_list = if b
then term_list_free_vars l fvp
else Nil }
| NLC_Not phi' -> let phi'_m = phi'.model_fo_formula_field in
assert { phim = Not phi'_m } ;
assert { match phi'_m with
| PApp _ _ -> true | _ -> false end } ;
{ skolemized = phi ;
skolem_bound = skb ;
model_transformer = identity ;
free_var_list = if b
then match destruct_fo_formula phi' with
| NLC_PApp _ l -> term_list_free_vars l fvp
| _ -> absurd
end
else Nil }
| NLC_And phi1 phi2 ->
let phi1m = phi1.model_fo_formula_field in
let phi2m = phi2.model_fo_formula_field in
assert { phim = And phi1m phi2m } ;
assert { forall ls:int. is_symbol_free_var_in_fo_formula ls phi1m ->
is_symbol_free_var_in_fo_formula ls phim } ;
assert { forall ls:int. is_symbol_free_var_in_fo_formula ls phi2m ->
is_symbol_free_var_in_fo_formula ls phim } ;
let res1 = skolemize phi1 skb b fvp in
let res2 = skolemize phi2 res1.skolem_bound b fvp in
let res1m = res1.skolemized.model_fo_formula_field in
let res2m = res2.skolemized.model_fo_formula_field in
let skr = construct_fo_formula (NLC_And res1.skolemized res2.skolemized) in
let skrm = skr.model_fo_formula_field in
let (res1f,res2f) = (res1.model_transformer,res2.model_transformer) in
let ghost transf = rcompose res1f res2f in
let fvlist = merge res1.free_var_list res2.free_var_list in
assert { skrm = And res1m res2m } ;
assert { forall m:model int 'st.
m.interp_pred = (res1f m).interp_pred =
(transf m).interp_pred } ;
assert { forall m:model int 'st, ls:int.
ls < skb ->
eval m.interp_fun ls = eval (res1f m).interp_fun ls
= eval (transf m).interp_fun ls } ;
assert { forall m:model int 'st,rho:int -> 'st.
formula_semantic res1m m rho <->
formula_semantic res1m (res2f m) rho } ;
assert { forall m:model int 'st,rho:int -> 'st.
formula_semantic phi2m m rho <->
formula_semantic phi2m (res1f m) rho } ;
assert { forall m:model int 'st,rho:int -> 'st.
transf m = res2f (res1f m) &&
(formula_semantic phi1m m rho ->
formula_semantic res1m (res1f m) rho &&
formula_semantic res1m (transf m) rho) /\
(formula_semantic phi2m m rho ->
formula_semantic phi2m (res1f m) rho &&
formula_semantic res2m (transf m) rho) } ;
assert { forall x:int. is_fo_term_free_var_in_fo_formula x skrm ->
(is_fo_term_free_var_in_fo_formula x res1m \/
is_fo_term_free_var_in_fo_formula x res2m) &&
S.mem x fvp } ;
{ skolemized = skr ;
skolem_bound = res2.skolem_bound ;
model_transformer = transf ;
free_var_list = fvlist }
| NLC_Or phi1 phi2 ->
let phi1m = phi1.model_fo_formula_field in
let phi2m = phi2.model_fo_formula_field in
assert { phim = Or phi1m phi2m } ;
assert { forall ls:int. is_symbol_free_var_in_fo_formula ls phi1m ->
is_symbol_free_var_in_fo_formula ls phim } ;
assert { forall ls:int. is_symbol_free_var_in_fo_formula ls phi2m ->
is_symbol_free_var_in_fo_formula ls phim } ;
let res1 = skolemize phi1 skb b fvp in
let res2 = skolemize phi2 res1.skolem_bound b fvp in
let res1m = res1.skolemized.model_fo_formula_field in
let res2m = res2.skolemized.model_fo_formula_field in
let skr = construct_fo_formula (NLC_Or res1.skolemized res2.skolemized) in
let skrm = skr.model_fo_formula_field in
let (res1f,res2f) = (res1.model_transformer,res2.model_transformer) in
let ghost transf = rcompose res1f res2f in
let fvlist = merge res1.free_var_list res2.free_var_list in
assert { skrm = Or res1m res2m } ;
assert { forall m:model int 'st.
m.interp_pred = (res1f m).interp_pred =
(transf m).interp_pred } ;
assert { forall m:model int 'st, ls:int.
ls < skb ->
eval m.interp_fun ls = eval (res1f m).interp_fun ls
= eval (transf m).interp_fun ls } ;
assert { forall m:model int 'st,rho:int -> 'st.
formula_semantic res1m m rho <->
formula_semantic res1m (res2f m) rho } ;
assert { forall m:model int 'st,rho:int -> 'st.
formula_semantic phi2m m rho <->
formula_semantic phi2m (res1f m) rho } ;
assert { forall m:model int 'st,rho:int -> 'st.
transf m = res2f (res1f m) &&
(formula_semantic phi1m m rho ->
formula_semantic res1m (res1f m) rho &&
formula_semantic res1m (transf m) rho) /\
(formula_semantic phi2m m rho ->
formula_semantic phi2m (res1f m) rho &&
formula_semantic res2m (transf m) rho) } ;
assert { forall x:int. is_fo_term_free_var_in_fo_formula x skrm ->
(is_fo_term_free_var_in_fo_formula x res1m
\/ is_fo_term_free_var_in_fo_formula x res2m) &&
S.mem x fvp } ;
{ skolemized = skr ;
skolem_bound = res2.skolem_bound ;
model_transformer = transf ;
free_var_list = fvlist }
| NLC_FTrue -> absurd
| NLC_FFalse -> absurd
| NLC_Forall x phi0 ->
let phi0m = phi0.model_fo_formula_field in
let ghost r0 = some[x <- None] in
let ghost phi1m = rename_fo_formula phi0m identity r0 in
assert { phim = Forall phi1m } ;
assert { phi0m = rename_fo_formula phi1m identity (ocase identity x) } ;
assert { forall ls:int.
(is_symbol_free_var_in_fo_formula ls phi1m <->
is_symbol_free_var_in_fo_formula ls phi0m) &&
(is_symbol_free_var_in_fo_formula ls phim <->
is_symbol_free_var_in_fo_formula ls phi0m) } ;
let ghost fvp' = S.add x fvp in
assert { forall xf:int.
(forall y:option int. is_fo_term_free_var_in_fo_formula y phi1m /\
ocase identity x y = xf -> match y with None -> x = xf && S.mem xf fvp'
| Some y -> y = xf && is_fo_term_free_var_in_fo_formula y phim &&
S.mem xf fvp && S.mem xf fvp' end && S.mem xf fvp') &&
(is_fo_term_free_var_in_fo_formula xf phi0m ->
(exists y:option int. is_fo_term_free_var_in_fo_formula y phi1m /\
ocase identity x y = xf) && S.mem xf fvp') &&
(is_fo_term_free_var_in_fo_formula xf phi0m -> S.mem xf fvp') };
let res = skolemize phi0 skb b fvp' in
let resm = res.skolemized.model_fo_formula_field in
let ghost res1m = rename_fo_formula resm identity r0 in
let skr = construct_fo_formula (NLC_Forall x res.skolemized) in
let skrm = skr.model_fo_formula_field in
let fvl = remove x res.free_var_list in
let transf = res.model_transformer in
assert { skrm = Forall res1m } ;
assert { forall ls:int.
(is_symbol_free_var_in_fo_formula ls res1m <->
(exists ls':int.
is_symbol_free_var_in_fo_formula ls' resm /\ identity ls' = ls)) &&
(is_symbol_free_var_in_fo_formula ls res1m <->
is_symbol_free_var_in_fo_formula ls resm) } ;
assert { forall m:model int 'st, rho:int -> 'st, xm:'st.
formula_semantic phi1m m (ocase rho xm) ->
formula_semantic phi0m m (rcompose r0 (ocase rho xm)) &&
formula_semantic resm (transf m) (rcompose r0 (ocase rho xm)) &&
formula_semantic res1m (transf m) (ocase rho xm)
} ;
assert { forall y:int.
is_fo_term_free_var_in_fo_formula (Some y) res1m ->
(forall z:int.
is_fo_term_free_var_in_fo_formula z resm /\ r0 z = Some y ->
z <> x && z = y ) &&
(is_fo_term_free_var_in_fo_formula y resm /\ y <> x)
&& ((b = True -> mem y fvl) /\ (S.mem y fvp' && S.mem y fvp))
} ;
{ skolemized = skr ;
skolem_bound = res.skolem_bound ;
model_transformer = transf ;
free_var_list = fvl }
| NLC_Exists x phi0 ->
let phi0m = phi0.model_fo_formula_field in
let ghost r0 = some[x <- None] in
let ghost phi1m = rename_fo_formula phi0m identity r0 in
assert { phim = Exists phi1m } ;
assert { forall ls:int.
(is_symbol_free_var_in_fo_formula ls phi1m <->
is_symbol_free_var_in_fo_formula ls phi0m) &&
(is_symbol_free_var_in_fo_formula ls phim <->
is_symbol_free_var_in_fo_formula ls phi0m) } ;
let ghost fvp' = S.add x fvp in
assert { phi0m = rename_fo_formula phi1m identity (ocase identity x) } ;
assert { forall xf:int.
(forall y:option int. is_fo_term_free_var_in_fo_formula y phi1m /\
ocase identity x y = xf -> match y with None -> x = xf && S.mem xf fvp'
| Some y -> y = xf && is_fo_term_free_var_in_fo_formula y phim &&
S.mem xf fvp && S.mem xf fvp' end && S.mem xf fvp') &&
(is_fo_term_free_var_in_fo_formula xf phi0m ->
(exists y:option int. is_fo_term_free_var_in_fo_formula y phi1m /\
ocase identity x y = xf) && S.mem xf fvp') &&
(is_fo_term_free_var_in_fo_formula xf phi0m -> S.mem xf fvp') };
let res = skolemize phi0 skb True fvp' in
let resm = res.skolemized.model_fo_formula_field in
let ghost res1m = rename_fo_formula resm identity r0 in
let fvl = res.free_var_list in
let fvl = remove x fvl in
let skb' = res.skolem_bound in
let fonil = construct_fo_term_list NLC_FONil in
assert { fonil.model_fo_term_list_field = FONil } ;
let skenv = skolem_parameters fvl { skolemized_fv_list = fonil ; skolem_env = default } fvp in
let skparams = skenv.skolemized_fv_list in
let skenv = skenv.skolem_env in
let skparamsm = skparams.model_fo_term_list_field in
assert { forall y:int.
is_fo_term_free_var_in_fo_formula (Some y) res1m ->
(forall z:int.
is_fo_term_free_var_in_fo_formula z resm /\ r0 z = Some y ->
z <> x && z = y ) &&
(is_fo_term_free_var_in_fo_formula y resm /\ y <> x) && mem y fvl } ;
let transf = skolem_model_transformer res1m skb' skparamsm skenv in
let symb = construct_symbol (NLCVar_symbol skb') in
assert { symb.model_symbol_field = Var_symbol skb' } ;
let skolemf = construct_fo_term (NLC_App symb skparams) in
let skolemfm = skolemf.model_fo_term_field in
assert { skolemfm = App (Var_symbol skb') skparamsm } ;
let phir = nlsubst_fo_term_in_fo_formula res.skolemized x skolemf in
let phirm = phir.model_fo_formula_field in
let resf = res.model_transformer in
let ghost transf2 = rcompose resf transf in
(* sat (Exists phi1m) -> sat (Exists res1m). *)
assert { forall m:model int 'st, rho:int -> 'st, xm:'st.
formula_semantic phi1m m (ocase rho xm) ->
formula_semantic phi0m m (rcompose r0 (ocase rho xm)) &&
formula_semantic resm (resf m) (rcompose r0 (ocase rho xm)) &&
formula_semantic res1m (resf m) (ocase rho xm)
} ;
assert { forall m:model int 'st, rho:int -> 'st.
formula_semantic phim m rho ->
formula_semantic (Exists res1m) (resf m) rho } ;
(* sat (Exists res1m) -> sat phir. *)
let ghost sub1 = subst_id_fo_term[x <- skolemfm] in
let ghost r1 = ocase identity x in
let ghost sub2 = ocase subst_id_fo_term skolemfm in
assert { phirm = subst_fo_formula resm subst_id_symbol sub1 } ;
assert { forall y:option int.
is_fo_term_free_var_in_fo_formula y res1m ->
(y <> Some x) && rcompose r1 sub1 y = sub2 y } ;
assert { subst_fo_formula res1m subst_id_symbol sub2 =
subst_fo_formula res1m subst_id_symbol (rcompose r1 sub1) } ;
assert { extensionalEqual (rcompose r0 r1) identity } ;
assert { phirm = subst_fo_formula res1m subst_id_symbol sub2 } ;
assert { forall m:model int 'st,rho:int -> 'st.
formula_semantic (Exists res1m) m rho ->
formula_semantic phirm (transf m) rho } ;
assert { forall y:int.
is_fo_term_free_var_in_fo_formula y phirm ->
(forall z:int.
is_fo_term_free_var_in_fo_formula z resm /\
is_fo_term_free_var_in_fo_term y (sub1 z) ->
(if z <> x then z = y && mem y fvl
else is_fo_term_free_var_in_fo_term y skolemfm &&
mem y fvl)) && mem y fvl } ;
(* Vexingly painful ! *)
assert { forall ls:int.
is_symbol_free_var_in_fo_formula ls phirm ->
is_symbol_free_var_in_fo_formula ls (subst_fo_formula resm subst_id_symbol sub1) &&
((forall z:int.
is_symbol_free_var_in_fo_formula z resm /\
is_symbol_free_var_in_symbol ls (subst_id_symbol z) ->
z = ls && z < skb' + 1 ) /\
(forall z:int.
is_fo_term_free_var_in_fo_formula z resm /\
is_symbol_free_var_in_fo_term ls (sub1 z) ->
(if z <> x then sub1 z = Var_fo_term z
else is_symbol_free_var_in_fo_term ls skolemfm &&
ls = skb' && ls < skb' + 1) && ls < skb' + 1) /\
((exists z:int.
is_symbol_free_var_in_fo_formula z resm /\
is_symbol_free_var_in_symbol ls (subst_id_symbol z)) \/
(exists z:int.
is_fo_term_free_var_in_fo_formula z resm /\
is_symbol_free_var_in_fo_term ls (sub1 z))))
&& ls < skb' + 1 } ;
(* Two point of views : either why3 do not deconstruct
records enough, either too much. *)
assert { forall m:model int 'st.
let mf = (resf m).interp_fun in
let mp = (resf m).interp_pred in
m.interp_pred = mp =
(transf ({ interp_fun = mf ; interp_pred = mp })).interp_pred
= (transf2 m).interp_pred &&
m.interp_pred = (transf2 m).interp_pred } ;
assert { forall m:model int 'st, ls:int.
ls < skb ->
let mf = (resf m).interp_fun in
let mp = (resf m).interp_pred in
eval m.interp_fun ls = eval mf ls
= eval (transf { interp_fun = mf ; interp_pred = mp }).interp_fun ls
= eval (transf2 m).interp_fun ls &&
eval m.interp_fun ls = eval (transf2 m).interp_fun ls } ;
assert { forall m:model int 'st,rho:int -> 'st.
let mf = (resf m).interp_fun in
let mp = (resf m).interp_pred in
formula_semantic phim m rho ->
formula_semantic (Exists res1m) ({ interp_fun = mf ; interp_pred = mp }) rho &&
formula_semantic phirm (transf ({ interp_fun = mf ; interp_pred = mp})) rho &&
formula_semantic phirm (transf2 m) rho } ;
{ skolemized = phir ;
skolem_bound = skb' + 1 ;
model_transformer = transf2 ;
free_var_list = fvl }
end
let rec skolemize_list (phil:nlimpl_fo_formula_list) (skb:int)
(ghost fvp:set int) : skolemization_list_return 'st
requires { nlimpl_fo_formula_list_ok phil }
requires { forall x:int. is_fo_term_free_var_in_fo_formula_list x
phil.model_fo_formula_list_field -> S.mem x fvp }
requires { is_simpl_list phil.model_fo_formula_list_field }
requires { is_nnf_list phil.model_fo_formula_list_field }
requires { forall ls:int.
is_symbol_free_var_in_fo_formula_list ls phil.model_fo_formula_list_field -> ls < skb }
ensures { nlimpl_fo_formula_list_ok result.skolemized_l }
ensures { forall x:int. is_fo_term_free_var_in_fo_formula_list x
result.skolemized_l.model_fo_formula_list_field -> S.mem x fvp }
ensures { result.skolem_bound_l >= skb }
ensures { forall ls:int.
is_symbol_free_var_in_fo_formula_list ls result.skolemized_l.model_fo_formula_list_field ->
ls < result.skolem_bound_l }
ensures { is_nnf_list result.skolemized_l.model_fo_formula_list_field }
ensures { is_simpl_list result.skolemized_l.model_fo_formula_list_field }
ensures { no_existential_list result.skolemized_l.model_fo_formula_list_field }
ensures { forall m:model int 'st, rho:int -> 'st.
formula_list_conj_semantic phil.model_fo_formula_list_field m rho ->
formula_list_conj_semantic result.skolemized_l.model_fo_formula_list_field
(eval result.model_transformer_l m) rho }
(* Completeness concern.
ensures { forall m:model int 'st, rho:int -> 'st.
formula_semantic result.skolemized.model_fo_formula_field m rho ->
formula_semantic phi.model_fo_formula_field m rho
*)
ensures { forall m:model int 'st, ls:int.
ls < skb -> eval m.interp_fun ls =
eval (eval result.model_transformer_l m).interp_fun ls }
ensures { forall m:model int 'st.
m.interp_pred = (eval result.model_transformer_l m).interp_pred }
variant { size_fo_formula_list phil.model_fo_formula_list_field }
=
let philm = phil.model_fo_formula_list_field in
match destruct_fo_formula_list phil with
| NLC_FOFNil -> { skolemized_l = phil ;
skolem_bound_l = skb ;
model_transformer_l = identity }
| NLC_FOFCons phi phiq -> let phim = phi.model_fo_formula_field in
let phiqm = phiq.model_fo_formula_list_field in
assert { philm = FOFCons phim phiqm } ;
assert { forall ls:int. is_symbol_free_var_in_fo_formula ls phim ->
is_symbol_free_var_in_fo_formula_list ls philm } ;
assert { forall ls:int. is_symbol_free_var_in_fo_formula_list ls phiqm ->
is_symbol_free_var_in_fo_formula_list ls philm } ;
let res = skolemize phi skb False fvp in
let resq = skolemize_list phiq res.skolem_bound fvp in
let resm = res.skolemized.model_fo_formula_field in
let resqm = resq.skolemized_l.model_fo_formula_list_field in
let skr = construct_fo_formula_list (NLC_FOFCons res.skolemized resq.skolemized_l) in
let skrm = skr.model_fo_formula_list_field in
let (resf,resqf) = (res.model_transformer,resq.model_transformer_l) in
let ghost transf = rcompose resf resqf in
assert { skrm = FOFCons resm resqm } ;
assert { forall m:model int 'st.
m.interp_pred = (resf m).interp_pred =
(transf m).interp_pred } ;
assert { forall m:model int 'st, ls:int.
ls < skb ->
eval m.interp_fun ls = eval (resf m).interp_fun ls
= eval (transf m).interp_fun ls } ;
assert { forall m:model int 'st,rho:int -> 'st.
formula_semantic resm m rho <->
formula_semantic resm (resqf m) rho } ;
assert { forall m:model int 'st,rho:int -> 'st.
formula_list_conj_semantic phiqm m rho <->
formula_list_conj_semantic phiqm (resf m) rho } ;
assert { forall m:model int 'st,rho:int -> 'st.
transf m = resqf (resf m) &&
(formula_semantic phim m rho ->
formula_semantic resm (resf m) rho &&
formula_semantic resm (transf m) rho) /\
(formula_list_conj_semantic phiqm m rho ->
formula_list_conj_semantic phiqm (resf m) rho &&
formula_list_conj_semantic resqm (transf m) rho) } ;
{ skolemized_l = skr ;
skolem_bound_l = resq.skolem_bound_l ;
model_transformer_l = transf }
end
(* No need for it in the logic... *)
type preprocessing_return 'st = {
preprocessed : nlimpl_fo_formula_list ;
final_goals_number : int ;
ghost model_transf : (model int 'st) -> (model int 'st) ;
}
type fvr = {
ghost sr : set int ;
lr : list int ;
}
let rec term_free_vars_noghost (t:nlimpl_fo_term) : fvr
requires { nlimpl_fo_term_ok t }
ensures { forall x:int.
is_fo_term_free_var_in_fo_term x t.model_fo_term_field ->
mem x result.lr }
ensures { iset_ok result.lr }
ensures { forall x:int. S.mem x result.sr <-> mem x result.lr }
variant { size_fo_term t.model_fo_term_field }
=
match destruct_fo_term t with
| NLCVar_fo_term x -> { sr = S.singleton x ; lr = Cons x Nil }
| NLC_App _ l -> term_list_free_vars_noghost l
end
with term_list_free_vars_noghost (l:nlimpl_fo_term_list) : fvr
requires { nlimpl_fo_term_list_ok l }
ensures { forall x:int.
is_fo_term_free_var_in_fo_term_list x l.model_fo_term_list_field ->
mem x result.lr }
ensures { forall x:int. S.mem x result.sr <-> mem x result.lr }
ensures { iset_ok result.lr }
variant { size_fo_term_list l.model_fo_term_list_field }
=
match destruct_fo_term_list l with
| NLC_FONil -> { lr = Nil ; sr = S.empty }
| NLC_FOCons t q -> let r1 = term_free_vars_noghost t in
let r2 = term_list_free_vars_noghost q in
{ lr = merge r1.lr r2.lr ; sr = S.union r1.sr r2.sr }
end
let rec collect_free_var_formula (phi:nlimpl_fo_formula) : fvr
requires { nlimpl_fo_formula_ok phi }
ensures { iset_ok result.lr }
ensures { forall x:int. is_fo_term_free_var_in_fo_formula x
phi.model_fo_formula_field -> mem x result.lr }
ensures { forall x:int. mem x result.lr <-> S.mem x result.sr }
variant { size_fo_formula phi.model_fo_formula_field }
=
let phim = phi.model_fo_formula_field in
match destruct_fo_formula phi with
| NLC_PApp p l -> let pm = p.model_symbol_field in
let lm = l.model_fo_term_list_field in
assert { phim = PApp pm lm } ;
term_list_free_vars_noghost l
| NLC_Not phi0 -> let phi0m = phi0.model_fo_formula_field in
assert { phim = Not phi0m } ;
collect_free_var_formula phi0
| NLC_And phi1 phi2 -> let phi1m = phi1.model_fo_formula_field in
let phi2m = phi2.model_fo_formula_field in
assert { phim = And phi1m phi2m } ;
let r1 = collect_free_var_formula phi1 in
let r2 = collect_free_var_formula phi2 in
{ lr = merge r1.lr r2.lr ; sr = S.union r1.sr r2.sr }
| NLC_Or phi1 phi2 -> let phi1m = phi1.model_fo_formula_field in
let phi2m = phi2.model_fo_formula_field in
assert { phim = Or phi1m phi2m } ;
let r1 = collect_free_var_formula phi1 in
let r2 = collect_free_var_formula phi2 in
{ lr = merge r1.lr r2.lr ; sr = S.union r1.sr r2.sr }
| NLC_FTrue -> { lr = Nil ; sr = S.empty }
| NLC_FFalse -> { lr = Nil ; sr = S.empty }
| NLC_Forall x phi0 -> let phi0m = phi0.model_fo_formula_field in
let ghost r0 = some[x <- None] in
let ghost phi1m = rename_fo_formula phi0m identity r0 in
assert { phim = Forall phi1m } ;
let r = collect_free_var_formula phi0 in
let res = { lr = remove x r.lr ; sr = S.remove x r.sr } in
assert { forall xf:int.
(forall y:int. is_fo_term_free_var_in_fo_formula y phi0m /\
eval (some[x<-None]) y = Some xf -> y <> x &&
Some xf = Some y && xf = y) && is_fo_term_free_var_in_fo_formula xf phim ->
is_fo_term_free_var_in_fo_formula (Some xf) phi1m &&
(exists y:int. is_fo_term_free_var_in_fo_formula y phi0m /\
eval (some[x <- None]) y = Some xf) && is_fo_term_free_var_in_fo_formula xf phi0m
&& xf <> x && mem xf res.lr } ;
res
| NLC_Exists x phi0 -> let phi0m = phi0.model_fo_formula_field in
let ghost r0 = some[x <- None] in
let ghost phi1m = rename_fo_formula phi0m identity r0 in
assert { phim = Exists phi1m } ;
let r = collect_free_var_formula phi0 in
let res = { lr = remove x r.lr ; sr = S.remove x r.sr } in
assert { forall xf:int.
(forall y:int. is_fo_term_free_var_in_fo_formula y phi0m /\
eval (some[x<-None]) y = Some xf -> y <> x &&
Some xf = Some y && xf = y) && is_fo_term_free_var_in_fo_formula xf phim ->
is_fo_term_free_var_in_fo_formula (Some xf) phi1m &&
(exists y:int. is_fo_term_free_var_in_fo_formula y phi0m /\
eval (some[x <- None]) y = Some xf) && is_fo_term_free_var_in_fo_formula xf phi0m
&& xf <> x && mem xf res.lr } ;
res
end
let rec collect_free_var_formula_list (phil:nlimpl_fo_formula_list) : fvr
requires { nlimpl_fo_formula_list_ok phil }
ensures { iset_ok result.lr }
ensures { forall x:int. is_fo_term_free_var_in_fo_formula_list x
phil.model_fo_formula_list_field -> mem x result.lr }
ensures { forall x:int. mem x result.lr <-> S.mem x result.sr }
variant { size_fo_formula_list phil.model_fo_formula_list_field }
=
match destruct_fo_formula_list phil with
| NLC_FOFNil -> { lr = Nil ; sr = S.empty }
| NLC_FOFCons phi0 q -> let fvr1 = collect_free_var_formula phi0 in
let fvr2 = collect_free_var_formula_list q in
{ lr = merge fvr1.lr fvr2.lr ;
sr = S.union fvr1.sr fvr2.sr }
end
let rec exists_quantify (l:list int) (phi:nlimpl_fo_formula) (ghost st:'st) : nlimpl_fo_formula
requires { nlimpl_fo_formula_ok phi }
requires { is_simpl phi.model_fo_formula_field }
requires { is_nnf phi.model_fo_formula_field }
requires { forall x:int. is_fo_term_free_var_in_fo_formula x
phi.model_fo_formula_field -> mem x l }
ensures { nlimpl_fo_formula_ok result }
ensures { forall x:int. not(is_fo_term_free_var_in_fo_formula x
result.model_fo_formula_field) }
ensures { forall m:model int 'st,rho:int -> 'st.
formula_semantic phi.model_fo_formula_field m rho ->
formula_semantic result.model_fo_formula_field m rho }
ensures { is_simpl result.model_fo_formula_field }
ensures { is_nnf result.model_fo_formula_field }
variant { l }
= let phim = phi.model_fo_formula_field in
match l with
| Nil -> phi
| Cons x q -> let phi' = construct_fo_formula (NLC_Exists x phi) in
let phi'_m = phi'.model_fo_formula_field in
let ghost phi1m = rename_fo_formula phim identity (some[x <- None]) in
assert { phi'_m = Exists phi1m } ;
assert { forall xf:int.
(forall y:int. is_fo_term_free_var_in_fo_formula y phim /\
eval (some[x<-None]) y = Some xf -> y <> x &&
Some xf = Some y && xf = y) && is_fo_term_free_var_in_fo_formula xf phi'_m ->
is_fo_term_free_var_in_fo_formula (Some xf) phi1m &&
(exists y:int. is_fo_term_free_var_in_fo_formula y phim /\
eval (some[x <- None]) y = Some xf) && is_fo_term_free_var_in_fo_formula xf phim
&& xf <> x && mem xf q } ;
assert { forall m:model int 'st,rho:int -> 'st.
formula_semantic phim m rho ->
let rhos = ocase rho (rho x) in
let sub = rcompose (some[x <- None]) subst_id_fo_term in
let rhos' = semantic_subst sub m rhos in
extensionalEqual rhos' rho &&
phi1m = subst_fo_formula phim subst_id_symbol (rcompose (some[x <- None]) subst_id_fo_term) &&
formula_semantic phi1m m rhos &&
(exists xm:'st. formula_semantic phi1m m (ocase rho xm)) &&
formula_semantic phi'_m m rho } ;
exists_quantify q phi' st
end
type comb_ret = {
form : nlimpl_fo_formula ;
llen : int ;
}
let rec combine_with (l:nlimpl_fo_formula_list) (phi0:nlimpl_fo_formula)
(ghost fvp:set int) (ghost st:'st) : comb_ret
requires { nlimpl_fo_formula_list_ok l }
requires { forall x:int. is_fo_term_free_var_in_fo_formula x phi0.model_fo_formula_field
-> S.mem x fvp }
requires { nlimpl_fo_formula_ok phi0 }
requires { forall x:int. is_fo_term_free_var_in_fo_formula_list x
l.model_fo_formula_list_field -> S.mem x fvp }
requires { is_simpl_list l.model_fo_formula_list_field }
requires { is_nnf_list l.model_fo_formula_list_field }
requires { is_simpl phi0.model_fo_formula_field }
requires { is_nnf phi0.model_fo_formula_field }
variant { size_fo_formula_list l.model_fo_formula_list_field }
ensures { nlimpl_fo_formula_ok result.form }
ensures { is_simpl result.form.model_fo_formula_field }
ensures { is_nnf result.form.model_fo_formula_field }
ensures { forall m:model int 'st,rho:int -> 'st.
formula_semantic result.form.model_fo_formula_field m rho <->
(formula_list_conj_semantic l.model_fo_formula_list_field m rho /\
formula_semantic phi0.model_fo_formula_field m rho) }
ensures { forall x:int. is_fo_term_free_var_in_fo_formula x
result.form.model_fo_formula_field -> S.mem x fvp }
=
let lm = l.model_fo_formula_list_field in
let phi0m = phi0.model_fo_formula_field in
match destruct_fo_formula_list l with
| NLC_FOFNil -> { form = phi0 ; llen = 1 }
| NLC_FOFCons x q -> let xm = x.model_fo_formula_field in
let qm = q.model_fo_formula_list_field in
assert { lm = FOFCons xm qm } ;
let cr = combine_with q x fvp st in
let phi' = cr.form in
let phi'_m = phi'.model_fo_formula_field in
let phir = construct_fo_formula (NLC_And phi0 phi') in
let phirm = phir.model_fo_formula_field in
assert { phirm = And phi0m phi'_m } ;
{ form = phir ; llen = cr.llen + 1 }
end
type split_ret = {
forms : nlimpl_fo_formula_list ;
total_goals : int ;
}
let rec split (phi:nlimpl_fo_formula) (l:nlimpl_fo_formula_list) (lnum:int) (gnum:int) (ghost st:'st) : split_ret
requires { nlimpl_fo_formula_ok phi }
requires { forall x:int. not(is_fo_term_free_var_in_fo_formula x
phi.model_fo_formula_field) }
requires { is_simpl phi.model_fo_formula_field }
requires { is_nnf phi.model_fo_formula_field }
requires { no_existential phi.model_fo_formula_field }
requires { nlimpl_fo_formula_list_ok l }
requires { forall x:int. not(is_fo_term_free_var_in_fo_formula_list x
l.model_fo_formula_list_field) }
requires { is_simpl_list l.model_fo_formula_list_field }
requires { is_nnf_list l.model_fo_formula_list_field }
requires { no_existential_list l.model_fo_formula_list_field }
variant { size_fo_formula phi.model_fo_formula_field }
ensures { forall m:model int 'st,rho:int -> 'st.
formula_list_conj_semantic result.forms.model_fo_formula_list_field m rho
<-> (formula_semantic phi.model_fo_formula_field m rho /\
formula_list_conj_semantic l.model_fo_formula_list_field m rho) }
ensures { nlimpl_fo_formula_list_ok result.forms }
ensures { forall x:int. not(is_fo_term_free_var_in_fo_formula_list x
result.forms.model_fo_formula_list_field) }
ensures { is_simpl_list result.forms.model_fo_formula_list_field }
ensures { is_nnf_list result.forms.model_fo_formula_list_field }
ensures { no_existential_list result.forms.model_fo_formula_list_field }
=
match destruct_fo_formula phi with
| NLC_And phi1 phi2 ->
(* gnum <> 0 : either need full count (<0),
either phi is a "goal". if lnum = 1,
then gnumcall must be updated accordingly.
if lnum <> 1 (not last of initial list),
then either gnum = 1 (last goal,do not want next count),
either it is expected. *)
let phim = phi.model_fo_formula_field in
let phi1m = phi1.model_fo_formula_field in
let phi2m = phi2.model_fo_formula_field in
assert { phim = And phi1m phi2m } ;
assert { forall x:int. is_fo_term_free_var_in_fo_formula x phi1m ->
is_fo_term_free_var_in_fo_formula x phim } ;
assert { forall x:int. is_fo_term_free_var_in_fo_formula x phi2m ->
is_fo_term_free_var_in_fo_formula x phim } ;
let gnumcall = if lnum = 1
then if gnum <> 0
then (-1)
else gnum - 1
else gnum - 1 in
let r0 = split phi2 l (lnum-1) gnumcall st in
let l0 = r0.forms in
(* need full count for r1. *)
let r1 = split phi1 l0 0 (-1) st in
let l1 = r1.forms in
{ forms = l1 ;
total_goals = if gnum <> 0
then r0.total_goals + r1.total_goals
else 0 }
| _ -> let lr = construct_fo_formula_list (NLC_FOFCons phi l) in
{ forms = lr ;
total_goals = if gnum <> 0
then 1
else 0 }
end
(* Prover preprocessing function:
From a set of formulas,
return an equi-satisfiable
(as completeness is not considered here,
it is only proved that satisfiability is preserved)
set of formulas without occurrence of true/false,
in negational normal form, without existential quantifiers.
Potentially raises an exception when the input set of formulas
was (trivially) unsatisfiable. *)
exception Sat
let preprocessing (phil:nlimpl_fo_formula_list) (gnum:int) (ghost st:'st) : preprocessing_return 'st
requires { nlimpl_fo_formula_list_ok phil }
ensures { nlimpl_fo_formula_list_ok result.preprocessed }
ensures { forall x:int. not(is_fo_term_free_var_in_fo_formula_list x
result.preprocessed.model_fo_formula_list_field) }
ensures { is_nnf_list result.preprocessed.model_fo_formula_list_field }
ensures { is_simpl_list result.preprocessed.model_fo_formula_list_field }
ensures { no_existential_list result.preprocessed.model_fo_formula_list_field }
ensures { forall m:model int 'st,rho:int -> 'st.
formula_list_conj_semantic phil.model_fo_formula_list_field m rho ->
formula_list_conj_semantic result.preprocessed.model_fo_formula_list_field
(eval result.model_transf m) rho }
raises { Unsat ->
forall m:model int 'st,rho:int -> 'st.
not(formula_list_conj_semantic phil.model_fo_formula_list_field m rho) }
raises { Sat -> forall m:model int 'st,rho:int -> 'st.
formula_list_conj_semantic phil.model_fo_formula_list_field m rho }
=
let s = collect_free_var_formula_list phil in
let fvp = s.sr in
let (phisimpl,gnum) = nnf_simpl_list phil gnum fvp st in
match destruct_fo_formula_list phisimpl with
| NLC_FOFNil -> raise Sat
| NLC_FOFCons phi0 q -> let cb = combine_with q phi0 fvp st in
let len = cb.llen in
let phicb = cb.form in
let phiex = exists_quantify s.lr phicb st in
let skr = (skolemize phiex phiex.nlfree_var_symbol_set_abstraction_fo_formula_field False S.empty:skolemization_return 'st) in
let phisk = skr.skolemized in
let tr = skr.model_transformer in
let fonil = construct_fo_formula_list NLC_FOFNil in
let spl = split phisk fonil len gnum st in
assert { forall m:model int 'st,rho:int -> 'st.
formula_list_conj_semantic phil.model_fo_formula_list_field m rho ->
formula_list_conj_semantic phisimpl.model_fo_formula_list_field m rho &&
(formula_semantic phi0.model_fo_formula_field m rho /\
formula_list_conj_semantic q.model_fo_formula_list_field m rho) &&
formula_semantic phicb.model_fo_formula_field m rho &&
formula_semantic phisk.model_fo_formula_field (tr m) rho &&
formula_list_conj_semantic fonil.model_fo_formula_list_field (tr m) rho &&
formula_list_conj_semantic spl.forms.model_fo_formula_list_field (tr m) rho } ;
{ preprocessed = spl.forms ;
final_goals_number = spl.total_goals ;
model_transf = tr }
end
(*
let preprocessing (phil:nlimpl_fo_formula_list) : preprocessing_return 'st
requires { nlimpl_fo_formula_list_ok phil }
ensures { nlimpl_fo_formula_list_ok result.preprocessed }
ensures { forall x:int. not(is_fo_term_free_var_in_fo_formula_list x
result.preprocessed.model_fo_formula_list_field) }
ensures { is_nnf_list result.preprocessed.model_fo_formula_list_field }
ensures { is_simpl_list result.preprocessed.model_fo_formula_list_field }
ensures { no_existential_list result.preprocessed.model_fo_formula_list_field }
ensures { forall m:model int 'st, rho:int -> 'st.
formula_list_conj_semantic phil.model_fo_formula_list_field m rho ->
formula_list_conj_semantic result.preprocessed.model_fo_formula_list_field
(eval result.model_transf m) rho }
raises { Unsat ->
forall m:model int 'st,rho:int -> 'st.
not(formula_list_conj_semantic phil.model_fo_formula_list_field m rho) }
=
let s = collect_free_var_formula_list in
let fvp = s.sr in
let phil' = nnf_simpl_list phil fvp in
TODO
let skr =
(skolemize_list phil' phil'.nlfree_var_symbol_set_abstraction_fo_formula_list_field fvp:
skolemization_list_return 'st) in
{ preprocessed = skr.skolemized_l ;
model_transf = skr.model_transformer_l }*)
end
|