File: Functions.mlw

package info (click to toggle)
why3 1.8.2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 45,028 kB
  • sloc: xml: 185,443; ml: 111,224; ansic: 3,998; sh: 2,578; makefile: 2,568; java: 865; python: 720; javascript: 290; lisp: 205; pascal: 173
file content (80 lines) | stat: -rw-r--r-- 2,559 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

module Config

  meta "select_inst" "goal"
  meta "select_lskept" "goal"
  meta "select_lsinst" "goal"

end

module Func

  use Config

  predicate extensionalEqual (f g:'a -> 'b) =
    forall x:'a. f x = g x

  (* Assume extensionality of function. *)

  axiom functionExtensionality [@W:non_conservative_extension:N] :
    forall f g:'a -> 'b. extensionalEqual f g -> f = g

  (* Mainly for use in whyml *)

  function eval (f:'a -> 'b) (x:'a) : 'b = f x

  (* Abstraction definition axiom :
       update (f:'a -> 'b) (x:'a) (y:'b) : 'a -> 'b =
         (\ z:'a. if x = z then y else f z) *)
  function update (f:'a -> 'b) (x:'a) (y:'b) : 'a -> 'b
  axiom update_def : forall f:'a -> 'b,x:'a,y:'b,z:'a.
    update f x y z = if x = z then y else f z

  function ([<-])(f:'a -> 'b) (x:'a) (y:'b) : 'a -> 'b = update f x y
  lemma update_eq : forall f:'a -> 'b,x:'a,y:'b.
    update f x y x = y
  lemma update_neq : forall f:'a -> 'b,x:'a,y:'b,z:'a.
    x <> z -> update f x y z = f z

  (* Abstraction definition axiom :
       constant identity : 'a -> 'a = (\ x:'a. x) *)
  constant identity : 'a -> 'a
  axiom identity_def : forall x:'a. identity x = x

  (* Abstraction definition axiom :
       function compose (g:'b -> 'c) (f:'a -> 'b) : func 'a 'c =
         (\ x:'a. g (f x)) *)
  function compose (g:'b -> 'c) (f:'a -> 'b) : 'a -> 'c
  axiom compose_def : forall g:'b -> 'c,f:'a -> 'b,x:'a.
    compose g f x = g (f x)
  function rcompose (f:'a -> 'b) (g:'b -> 'c) : 'a -> 'c = compose g f

  let lemma compose_associative (h:'c -> 'd) (g:'b -> 'c) (f:'a -> 'b) : unit
    ensures { compose (compose h g) f = compose h (compose g f) }
  =
    assert { extensionalEqual (compose (compose h g) f) (compose h (compose g f)) }

  let lemma identity_neutral (f:'a -> 'b) : unit
    ensures { compose f identity = f }
    ensures { compose identity f = f }
  =
    assert { extensionalEqual (compose f identity) f } ;
    assert { extensionalEqual (compose identity f) f }

  (* Abstraction definition axiom :
       function const (x:'b) : 'a -> 'b =
         (\ z:'a.x) *)
  function const (x: 'b) : 'a -> 'b
  axiom const_def : forall x:'b,z:'a. const x z = x

  let lemma const_compose_left (f:'a -> 'b) (x:'c) : unit
    ensures { compose (const x) f = const x }
  =
    assert { extensionalEqual (const x) (compose (const x) f) }

  let lemma const_compose_right (f:'a -> 'b) (x:'a) (_:'c) : unit
    ensures { compose f (const x) = (const (f x): 'c -> 'b) }
  =
    assert { extensionalEqual (const (f x) : 'c -> 'b) (compose f (const x)) }

end