1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
|
module Pred
use Functions.Func
use bool.Bool
predicate predExtensionalEqual (p q:'a -> bool) =
forall x:'a. p x <-> q x
(* Assume extensionality of predicate. *)
axiom predicateExtensionality [@W:non_conservative_extension:N] :
forall p q:'a -> bool. predExtensionalEqual p q -> p = q
(* Mainly for use in whyml *)
predicate evalp (p:'a -> bool) (x:'a) = p x
(* Abstraction definition axiom :
pupdate (p:'a -> bool) (x:'a) (y:bool) : 'a -> bool =
(\ z:'a. if x = z then y = True else p z) *)
function pupdate (p:'a -> bool) (x:'a) (y:bool) : 'a -> bool
axiom pupdate_def : forall p:'a -> bool,x:'a,y:bool,z:'a.
pupdate p x y z <-> if x = z then y = True else p z
lemma pupdate_eq : forall p:'a -> bool,x:'a,y:bool.
pupdate p x y x <-> y = True
lemma pupdate_neq : forall p:'a -> bool,x:'a,y:bool,z:'a.
x <> z -> pupdate p x y z <-> p z
(* Abstraction definition axiom :
function pcompose (p:'b -> bool) (f:'a -> bool 'b) : 'b -> bool =
(\ x:'a. p (f x)) *)
function pcompose (p:'b -> bool) (f:'a -> 'b) : 'a -> bool
axiom pcompose_def : forall p:'b -> bool,f:'a -> 'b,x:'a.
pcompose p f x <-> p (f x)
let lemma pcompose_associative (p:'c -> bool) (g:'b -> 'c) (f:'a -> 'b) : unit
ensures { pcompose (pcompose p g) f = pcompose p (compose g f) }
=
assert { predExtensionalEqual (pcompose (pcompose p g) f) (pcompose p (compose g f)) }
let lemma identity_neutral (p:'a -> bool) : unit
ensures { pcompose p identity = p }
=
assert { predExtensionalEqual (pcompose p identity) p }
(* Abstraction definition axiom :
constant pfalse : 'a -> bool = (\z:'a. false) *)
constant pfalse : 'a -> bool
axiom pfalse_def : forall x:'a. not(pfalse x)
(* Abstraction definition axiom :
constant ptrue : 'a -> bool = (\z:'a. true) *)
constant ptrue : 'a -> bool
axiom ptrue_def : forall x:'a. ptrue x
(*(* Abstraction definition axiom :
function const (x:'b) : 'a -> 'b =
(\ z:'a.x) *)
function const (x: 'b) : 'a -> 'b
axiom const_def : forall x:'b,z:'a. const x z = x
let lemma const_compose_left (f:'a -> 'b) (x:'c) : unit
ensures { compose (const x) f = const x }
=
assert { extensionalEqual (const x) (compose (const x) f) }
let lemma const_compose_right (f: 'a -> 'b) (x:'a) : unit
ensures { compose f (const x) = (const (f x) : 'c -> 'b) }
=
assert { extensionalEqual (const (f x) : func 'c 'b) (compose f (const x)) }*)
end
|