File: register_allocation.mlw

package info (click to toggle)
why3 1.8.2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 45,028 kB
  • sloc: xml: 185,443; ml: 111,224; ansic: 3,998; sh: 2,578; makefile: 2,568; java: 865; python: 720; javascript: 290; lisp: 205; pascal: 173
file content (309 lines) | stat: -rw-r--r-- 8,855 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309

(** A tiny register allocator for tree expressions.

    Authors: Martin Clochard (École Normale Supérieure)
             Jean-Christophe Filliâtre (CNRS)
 *)

module Spec

  use int.Int

  type addr

  type expr =
  | Evar addr
  | Eneg expr
  | Eadd expr expr

  type memory = addr -> int

  function eval (m: memory) (e: expr) : int =
    match e with
    | Evar x     -> m x
    | Eneg e     -> - (eval m e)
    | Eadd e1 e2 -> eval m e1 + eval m e2
    end

  type register = int

  type instr =
    | Iload addr register
    | Ineg  register
    | Iadd  register register
    | Ipush register
    | Ipop  register

  type registers = register -> int

  function update (reg: registers) (r: register) (v: int) : registers =
    fun r' -> if r' = r then v else reg r'

  use list.List

  type stack = list int

  type state = {
    mem: memory;
    reg: registers;
    st : stack;
  }

  function exec (i: instr) (s: state) : state =
    match i with
    | Iload x r   -> { s with reg = update s.reg r (s.mem x) }
    | Ineg  r     -> { s with reg = update s.reg r (- s.reg r) }
    | Iadd  r1 r2 -> { s with reg = update s.reg r2 (s.reg r1 + s.reg r2) }
    | Ipush r     -> { s with st = Cons (s.reg r) s.st }
    | Ipop  r     -> match s.st with
                     | Nil       -> s (* fails *)
                     | Cons v st -> { s with reg = update s.reg r v; st = st }
                     end
    end
  meta rewrite_def function exec

  type code = list instr

  function exec_list (c: code) (s: state) : state =
    match c with
    | Nil      -> s
    | Cons i l -> exec_list l (exec i s)
    end

  use list.Append

  let rec lemma exec_append (c1 c2: code) (s: state) : unit
    ensures { exec_list (c1 ++ c2) s = exec_list c2 (exec_list c1 s) }
    variant { c1 }
  = match c1 with
    | Nil        -> ()
    | Cons i1 l1 -> exec_append l1 c2 (exec i1 s)
    end

  (** specification of the forthcoming compilation:
      - value of expression e lies in register r in final state
      - all registers smaller than are preserved
      - memory and stack are preserved *)
  function expr_post (e: expr) (r: register) : state -> state -> bool =
    fun s s' -> s'.mem = s.mem /\ s'.reg r = eval s.mem e /\ s'.st = s.st /\
      forall r'. r' < r -> s'.reg r' = s.reg r'
  meta rewrite_def function expr_post

end

(** Double WP technique

    If you read French, see https://hal.inria.fr/hal-01094488

    See also this other Why3 proof, from where this technique originates:
    http://toccata.lri.fr/gallery/double_wp.en.html
*)

module DWP

  use list.List
  use list.Append
  use Spec

  meta compute_max_steps 0x10000

  predicate (-->) (x y: 'a) = [@rewrite] x = y
  meta rewrite_def predicate (-->)

  type post = state -> state -> bool
  type hcode = {
    hcode : code;
    ghost post : post;
  }
  predicate hcode_ok (hc: hcode) = forall s. hc.post s (exec_list hc.hcode s)

  type trans = (state -> bool) -> state -> bool
  type wcode = {
    ghost trans : trans;
    wcode : code;
  }
  predicate wcode_ok (wc: wcode) = forall q s.
    wc.trans q s -> q (exec_list wc.wcode s)

  function to_wp (pst: post) : trans = fun q s1 -> forall s2. pst s1 s2 -> q s2
  meta rewrite_def function to_wp

  function rcompose : ('a -> 'b) -> ('b -> 'c) -> 'a -> 'c = fun f g x -> g (f x)
  meta rewrite_def function rcompose

  function exec_closure (i: instr) : state -> state = fun s -> exec i s
  function id : 'a -> 'a = fun x -> x

  let ($_) (hc: hcode) : wcode
    requires { hcode_ok hc }
    ensures { wcode_ok result }
    ensures { result.trans --> to_wp hc.post }
  = { wcode = hc.hcode; trans = to_wp hc.post }

  let wrap (wc: wcode) (ghost pst: post) : hcode
    requires { wcode_ok wc }
    requires { forall x. wc.trans (pst x) x }
    ensures { hcode_ok result }
    ensures { result.post --> pst }
  = { hcode = wc.wcode; post = pst }

  let (--) (w1 w2: wcode) : wcode
    requires { wcode_ok w1 /\ wcode_ok w2 }
    ensures { wcode_ok result }
    ensures { result.trans --> rcompose w2.trans w1.trans }
  = { wcode = w1.wcode ++ w2.wcode; trans = rcompose w2.trans w1.trans }

  let cons (i: instr) (w: wcode) : wcode
    requires { wcode_ok w }
    ensures { wcode_ok result }
    ensures { result.trans --> rcompose w.trans (rcompose (exec i)) }
  = { wcode = Cons i w.wcode;
      trans = rcompose w.trans (rcompose (exec_closure i)) }

  let nil () : wcode
    ensures { wcode_ok result }
    ensures { result.trans --> fun q -> q }
  = { wcode = Nil; trans = id }

end

module InfinityOfRegisters

  use int.Int
  use list.List
  use list.Append
  use Spec
  use DWP

  (** `compile e r` returns a list of instructions that stores the value
      of `e` in register `r`, without modifying any register `r' < r`. *)

  let rec compile (e: expr) (r: register) : hcode
    variant { e }
    ensures { hcode_ok result }
    ensures { result.post --> expr_post e r }
  = wrap (
      match e with
      | Evar x -> cons (Iload x r) (nil ())
      | Eneg e -> $ compile e r -- cons (Ineg r) (nil ())
      | Eadd e1 e2 ->
          $ compile e1 r -- $ compile e2 (r + 1) -- cons (Iadd (r+1) r) (nil ())
      end) (expr_post e r)

  (* To recover usual specification. *)
  let ghost recover (e: expr) (r: register) (h: hcode) : unit
    requires { hcode_ok h /\ h.post --> expr_post e r }
    ensures  { forall s. let s' = exec_list h.hcode s in
               s'.mem = s.mem /\
               s'.reg r = eval s.mem e /\
               s'.st = s.st /\
               forall r'. r' < r -> s'.reg r' = s.reg r' }
  = ()

end

module FiniteNumberOfRegisters

  use int.Int
  use list.List
  use list.Append
  use Spec
  use DWP

  (** we have k registers, namely 0,1,...,k-1,
      and there are at least two of them, otherwise we can't add *)
  val constant k: int
    ensures { 2 <= result }

  (** `compile e r` returns a list of instructions that stores the value
      of `e` in register `r`, without modifying any register `r' < r`. *)

  let rec compile (e: expr) (r: register) : hcode
    requires { 0 <= r < k }
    variant  { e }
    ensures  { hcode_ok result }
    ensures  { result.post --> expr_post e r }
  = wrap (
      match e with
      | Evar x -> cons (Iload x r) (nil ())
      | Eneg e -> $ compile e r -- cons (Ineg r) (nil ())
      | Eadd e1 e2 ->
          if r < k-1 then
            $ compile e1 r -- $ compile e2 (r + 1) --
            cons (Iadd (r + 1) r) (nil ())
          else
            cons (Ipush (k - 2)) (
            $ compile e1 (k - 2) -- $ compile e2 (k - 1) --
            cons (Iadd (k - 2) (k - 1)) (
            cons (Ipop (k - 2)) (nil ())))
      end) (expr_post e r)

end

module OptimalNumberOfRegisters

  use int.Int
  use int.MinMax
  use list.List
  use list.Append
  use Spec
  use DWP

  (** we have `k` registers, namely `0,1,...,k-1`,
      and there are at least two of them, otherwise we can't add *)
  val constant k: int
    ensures { 2 <= result }

  (** the minimal number of registers needed to evaluate e *)
  let rec function n (e: expr) : int
  variant { e }
  = match e with
    | Evar _     -> 1
    | Eneg e     -> n e
    | Eadd e1 e2 -> let n1 = n e1 in let n2 = n e2 in
                    if n1 = n2 then 1 + n1 else max n1 n2
    end

  (** Note: This is of course inefficient to recompute function `n` many
      times. A realistic implementation would compute `n e` once for
      each sub-expression `e`, either with a first pass of tree decoration,
      or with function `compile` returning the value of `n e` as well,
      in a bottom-up way *)

  function measure (e: expr) : int =
    match e with
    | Evar _     -> 0
    | Eneg e     -> 1 + measure e
    | Eadd e1 e2 -> 1 + if n e1 >= n e2 then measure e1 + measure e2
                        else 1 + measure e1 + measure e2
    end

  lemma measure_nonneg: forall e. measure e >= 0

  (** `compile e r` returns a list of instructions that stores the value
      of `e` in register `r`, without modifying any register `r' < r`. *)

  let rec compile (e: expr) (r: register) : hcode
    requires { 0 <= r < k }
    variant  { measure e }
    ensures  { hcode_ok result }
    ensures  { result.post --> expr_post e r }
  = wrap (
      match e with
      | Evar x -> cons (Iload x r) (nil ())
      | Eneg e -> $ compile e r -- cons (Ineg r) (nil ())
      | Eadd e1 e2 ->
          if n e1 >= n e2 then (* we must compile e1 first *)
            if r < k-1 then
              $ compile e1 r -- $ compile e2 (r + 1) --
              cons (Iadd (r + 1) r) (nil ())
            else
              cons (Ipush (k - 2)) (
              $ compile e1 (k - 2) -- $ compile e2 (k - 1) --
              cons (Iadd (k - 2) (k - 1)) (
              cons (Ipop (k - 2)) (nil ())))
          else
            $ compile (Eadd e2 e1) r (* compile e2 first *)
      end) (expr_post e r)

end