File: split_string.mlw

package info (click to toggle)
why3 1.8.2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 45,028 kB
  • sloc: xml: 185,443; ml: 111,224; ansic: 3,998; sh: 2,578; makefile: 2,568; java: 865; python: 720; javascript: 290; lisp: 205; pascal: 173
file content (199 lines) | stat: -rw-r--r-- 6,231 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

(** Splitting a string according to a character separator

  This problem was suggested by Georges-Axel Jaloyan (Amazon Web Services),
  during a talk at the first Dafny workshop (London, 2024).

  The problem is stated as follows: split a string `s` according to a
  character separator `sep`, as a sequence of substrings `[s0;s1;...sn]`
  where
  - the separator does not appear in any `si`;
  - the concatenation `s0+sep+s1+sep+...+sep+sn` is equal to `s`.

  Examples. Assuming that the separator character is '.', here are some
  expected input/output:

    +---------+-------------------+
    | input   | output            |
    +---------+-------------------+
    | ""      |  [""]             |
    | "."     |  ["", ""]         |
    | ".."    |  ["", "", ""]     |
    | "abc"   |  ["abc"]          |
    | "abc."  |  ["abc", ""]      |
    | ".abc"  |  ["", "abc"]      |
    | "a.bc"  |  ["a", "bc"]      |
    | "a..bc" |  ["a", "", "bc"]  |
    +---------+-------------------+

  Note that the output sequence is never empty.

  Additionnally, we possibly set a limit to the total number of
  substrings in the output. We do so with an integer parameter `limit`.
  If `limit = -1`, there is no limit. Otherwise, `limit >= 1`.
  When a limit is set, the last substring in the output may contain the
  separator.

  Examples. Assuming that the separator character is '.' and the limit
  is 2, here are some expected input/output:

    +-----------+----------------+
    | input     | output         |
    +-----------+----------------+
    | "a."      | ["a", ""]      |
    | "b.."     | ["b", "."]     |
    | "b..."    | ["b", ".."]    |
    | "ba.b.b." | ["ba", "b.b."] |
    +-----------+----------------+

  Author: Jean-Christophe Filliâtre (CNRS)
*)

module SplitString

  use int.Int
  use seq.Seq
  use seq.FreeMonoid
  use seq.Mem

  (** Characters and strings *)

  type char

  val (=) (x y: char) : bool
    ensures { result <-> x=y }

  type string_ = seq char

  (** Specification *)

  (** `concat [s0;s1;...;sn] sep` is `s0+sep+s1+sep+...+sep+sn`
      for a non-empty sequence of strings *)
  let rec function concat (ss: seq string_) (sep: char) : string_
    requires { length ss >= 1 } variant { length ss }
  = if length ss = 1 then ss[0]
    else concat ss[0..length ss - 1] sep ++ (cons sep ss[length ss - 1])

  (** a mere shortcut, for convenience *)
  predicate notin (sep: char) (s: string_)
  = not (mem sep s)

  (** Code *)

  let ([]) (s: string_) (i: int) : char
    requires { [@expl:index in string bounds] 0 <= i < length s }
  = get s i

  let split_string (s: string_) (sep: char) (limit: int) : (ss: seq string_)
    requires { limit = -1 || limit >= 1 }
    ensures  { length ss >= 1 }
    ensures  { limit = -1 || length ss <= limit }
    ensures  { forall j. 0 <= j < length ss - 1 -> notin sep ss[j] }
    ensures  { length ss = limit || notin sep ss[length ss - 1] }
    ensures  { concat ss sep == s }
  = if limit = 1 then return (singleton s);
    let ref ss = empty in
    let ref i = 0 in
    let ref b = 0 in
    while i < length s do
      invariant { 0 <= b <= i <= length s }
      invariant { forall j. 0 <= j < length ss -> notin sep ss[j] }
      invariant { forall j. b <= j < i -> s[j] <> sep }
      invariant { limit = -1 || length ss < limit-1 }
      invariant { concat (snoc ss s[b..]) sep == s }
      variant   { length s - i }
      if s[i] = sep then (
        ss <- snoc ss s[b..i];
        assert { s[b..] == s[b..i] ++ cons sep s[i+1..] };
        if length ss = limit-1 then return snoc ss s[i+1..];
        b <- i+1;
      );
      i <- i+1
    done;
    return snoc ss s[b..]

end

module SplitStringOCaml

  use int.Int
  use seq.Seq
  use seq.FreeMonoid
  use seq.Mem
  use mach.int.Int63
  use mach.peano.Peano
  use mach.peano.Int63
  use queue.Queue as Q

  (** Characters and strings *)

  type char

  val (=) (x y: char) : bool
    ensures { result <-> x=y }

  type string_ = private {
    ghost contents_: seq char;
  }
  meta coercion function contents_

  (** Specification *)

  (** `concat [s0;s1;...;sn] sep` is `s0+sep+s1+sep+...+sep+sn`
      for a non-empty sequence of strings *)
  let rec ghost function concat (ss: seq string_) (sep: char) : seq char
    requires { length ss >= 1 } variant { length ss }
  = if length ss = 1 then ss[0].contents_
    else concat ss[0..length ss - 1] sep ++ (cons sep ss[length ss - 1].contents_)

  (** a mere shortcut, for convenience *)
  predicate notin (sep: char) (s: string_)
  = not (mem sep s)

  (** Code *)

  val length (s: string_) : int63
    ensures  { result = length s }

  val sub (s: string_) (i j: int63) : string_
    requires { [@expl:index in string bounds] 0 <= i <= j <= length s }
    ensures  { result = s[i..j] }

  val ([]) (s: string_) (i: int63) : char
    requires { [@expl:index in string bounds] 0 <= i < length s }
    ensures  { result = s[i] }

  let partial split_string (s: string_) (sep: char) (limit: int63) : (ss: Q.t string_)
    requires { limit = -1 || limit >= 1 }
    ensures  { length ss >= 1 }
    ensures  { limit = -1 || length ss <= limit }
    ensures  { forall j. 0 <= j < length ss - 1 -> notin sep ss[j] }
    ensures  { length ss = limit || notin sep ss[length ss - 1] }
    ensures  { concat ss sep == s }
  = let ref ss = Q.create () in
    if limit = (1:int63) then (Q.push s ss; return ss);
    let ref i = 0: int63 in
    let ref b = 0: int63 in
    let ghost ref suffix = s in
    while i < length s do
      invariant { 0 <= b <= i <= length s }
      invariant { forall j. 0 <= j < length ss -> notin sep ss[j] }
      invariant { forall j. b <= j < i -> s[j] <> sep }
      invariant { limit = -1 || length ss < limit-1 }
      invariant { suffix = s[b..] }
      invariant { concat (snoc ss suffix) sep == s }
      variant   { length s - i }
      if s[i] = sep then (
        Q.push (sub s b i) ss;
        assert { s[b..] == s[b..i] ++ cons sep s[i+1..] };
        if to_int63 (Q.length ss) = limit - (1:int63) then
          (Q.push (sub s (i+1) (length s)) ss; return ss);
        b <- i+1;
        suffix <- sub s b (length s)
      );
      i <- i+1
    done;
    Q.push (sub s b (length s)) ss;
    return ss

end