1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
(* This file is generated by Why3's Coq driver *)
(* Beware! Only edit allowed sections below *)
Require Import BuiltIn.
Require BuiltIn.
Require HighOrd.
Require int.Int.
Require map.Map.
Require map.Occ.
Require map.MapPermut.
Axiom array : forall (a:Type), Type.
Parameter array_WhyType :
forall (a:Type) {a_WT:WhyType a}, WhyType (array a).
Existing Instance array_WhyType.
Parameter elts:
forall {a:Type} {a_WT:WhyType a}, array a -> Numbers.BinNums.Z -> a.
Parameter length:
forall {a:Type} {a_WT:WhyType a}, array a -> Numbers.BinNums.Z.
Axiom array'invariant :
forall {a:Type} {a_WT:WhyType a},
forall (self:array a), (0%Z <= (length self))%Z.
(* Why3 assumption *)
Definition mixfix_lbrb {a:Type} {a_WT:WhyType a} (a1:array a)
(i:Numbers.BinNums.Z) : a :=
elts a1 i.
Parameter mixfix_lblsmnrb:
forall {a:Type} {a_WT:WhyType a}, array a -> Numbers.BinNums.Z -> a ->
array a.
Axiom mixfix_lblsmnrb'spec'0 :
forall {a:Type} {a_WT:WhyType a},
forall (a1:array a) (i:Numbers.BinNums.Z) (v:a),
((length (mixfix_lblsmnrb a1 i v)) = (length a1)).
Axiom mixfix_lblsmnrb'spec :
forall {a:Type} {a_WT:WhyType a},
forall (a1:array a) (i:Numbers.BinNums.Z) (v:a),
((elts (mixfix_lblsmnrb a1 i v)) = (map.Map.set (elts a1) i v)).
Parameter make:
forall {a:Type} {a_WT:WhyType a}, Numbers.BinNums.Z -> a -> array a.
Axiom make_spec :
forall {a:Type} {a_WT:WhyType a},
forall (n:Numbers.BinNums.Z) (v:a), (0%Z <= n)%Z ->
(forall (i:Numbers.BinNums.Z), (0%Z <= i)%Z /\ (i < n)%Z ->
((mixfix_lbrb (make n v) i) = v)) /\
((length (make n v)) = n).
(* Why3 assumption *)
Definition map_eq_sub {a:Type} {a_WT:WhyType a} (a1:Numbers.BinNums.Z -> a)
(a2:Numbers.BinNums.Z -> a) (l:Numbers.BinNums.Z) (u:Numbers.BinNums.Z) :
Prop :=
forall (i:Numbers.BinNums.Z), (l <= i)%Z /\ (i < u)%Z -> ((a1 i) = (a2 i)).
(* Why3 assumption *)
Definition array_eq_sub {a:Type} {a_WT:WhyType a} (a1:array a) (a2:array a)
(l:Numbers.BinNums.Z) (u:Numbers.BinNums.Z) : Prop :=
((length a1) = (length a2)) /\
((0%Z <= l)%Z /\ (l <= (length a1))%Z) /\
((0%Z <= u)%Z /\ (u <= (length a1))%Z) /\
map_eq_sub (elts a1) (elts a2) l u.
(* Why3 assumption *)
Definition array_eq {a:Type} {a_WT:WhyType a} (a1:array a) (a2:array a) :
Prop :=
((length a1) = (length a2)) /\
map_eq_sub (elts a1) (elts a2) 0%Z (length a1).
(* Why3 assumption *)
Definition exchange {a:Type} {a_WT:WhyType a} (a1:Numbers.BinNums.Z -> a)
(a2:Numbers.BinNums.Z -> a) (l:Numbers.BinNums.Z) (u:Numbers.BinNums.Z)
(i:Numbers.BinNums.Z) (j:Numbers.BinNums.Z) : Prop :=
((l <= i)%Z /\ (i < u)%Z) /\
((l <= j)%Z /\ (j < u)%Z) /\
((a1 i) = (a2 j)) /\
((a1 j) = (a2 i)) /\
(forall (k:Numbers.BinNums.Z), (l <= k)%Z /\ (k < u)%Z -> ~ (k = i) ->
~ (k = j) -> ((a1 k) = (a2 k))).
Axiom exchange_set :
forall {a:Type} {a_WT:WhyType a},
forall (a1:Numbers.BinNums.Z -> a) (l:Numbers.BinNums.Z)
(u:Numbers.BinNums.Z) (i:Numbers.BinNums.Z) (j:Numbers.BinNums.Z),
(l <= i)%Z /\ (i < u)%Z -> (l <= j)%Z /\ (j < u)%Z ->
exchange a1 (map.Map.set (map.Map.set a1 i (a1 j)) j (a1 i)) l u i j.
(* Why3 assumption *)
Definition exchange1 {a:Type} {a_WT:WhyType a} (a1:array a) (a2:array a)
(i:Numbers.BinNums.Z) (j:Numbers.BinNums.Z) : Prop :=
((length a1) = (length a2)) /\
exchange (elts a1) (elts a2) 0%Z (length a1) i j.
(* Why3 assumption *)
Definition permut {a:Type} {a_WT:WhyType a} (a1:array a) (a2:array a)
(l:Numbers.BinNums.Z) (u:Numbers.BinNums.Z) : Prop :=
((length a1) = (length a2)) /\
((0%Z <= l)%Z /\ (l <= (length a1))%Z) /\
((0%Z <= u)%Z /\ (u <= (length a1))%Z) /\
map.MapPermut.permut (elts a1) (elts a2) l u.
(* Why3 assumption *)
Definition permut_sub {a:Type} {a_WT:WhyType a} (a1:array a) (a2:array a)
(l:Numbers.BinNums.Z) (u:Numbers.BinNums.Z) : Prop :=
map_eq_sub (elts a1) (elts a2) 0%Z l /\
permut a1 a2 l u /\ map_eq_sub (elts a1) (elts a2) u (length a1).
(* Why3 assumption *)
Definition permut_all {a:Type} {a_WT:WhyType a} (a1:array a) (a2:array a) :
Prop :=
((length a1) = (length a2)) /\
map.MapPermut.permut (elts a1) (elts a2) 0%Z (length a1).
(* Why3 goal *)
Theorem exchange_permut_sub {a:Type} {a_WT:WhyType a} :
forall (a1:array a) (a2:array a) (i:Numbers.BinNums.Z)
(j:Numbers.BinNums.Z) (l:Numbers.BinNums.Z) (u:Numbers.BinNums.Z),
exchange1 a1 a2 i j -> (l <= i)%Z /\ (i < u)%Z ->
(l <= j)%Z /\ (j < u)%Z -> (0%Z <= l)%Z -> (u <= (length a1))%Z ->
permut_sub a1 a2 l u.
(* Why3 intros a1 a2 i j l u h1 (h2,h3) (h4,h5) h6 h7. *)
intros a1 a2 i j l u h1 (h2,h3) (h4,h5) h6 h7.
destruct h1 as (h11,h12).
destruct h12 as (ha,(hb,(hc,(hd,he)))).
red. repeat split.
(* eq_sub *)
red. intros. apply he; auto with zarith.
assumption. assumption. auto with zarith. auto with zarith. assumption.
(* permut *)
red. intro v.
assert (Occ.occ v (elts a1) i (i+1) + Occ.occ v (elts a1) j (j+1)
= Occ.occ v (elts a2) i (i+1) + Occ.occ v (elts a2) j (j+1))%Z.
destruct (why_decidable_eq (elts a1 i) v).
rewrite Occ.occ_right_add. 2: auto with zarith. 2: ring_simplify (i+1-1)%Z; assumption.
rewrite (Occ.occ_right_add v (elts a2) j). 2: auto with zarith.
2: ring_simplify (j+1-1)%Z; rewrite <- hc; assumption.
ring_simplify (i+1-1)%Z. ring_simplify (j+1-1)%Z.
rewrite Occ.occ_empty. 2: auto with zarith. rewrite (Occ.occ_empty v (elts a2) j). 2: auto with zarith.
destruct (why_decidable_eq (elts a1 j) v).
rewrite Occ.occ_right_add. 2: auto with zarith. 2: ring_simplify (j+1-1)%Z; assumption.
rewrite (Occ.occ_right_add v (elts a2) i). 2: auto with zarith.
2: ring_simplify (i+1-1)%Z; rewrite <- hd; assumption.
ring_simplify (i+1-1)%Z. ring_simplify (j+1-1)%Z.
rewrite Occ.occ_empty. 2: auto with zarith. rewrite (Occ.occ_empty v (elts a2) i). 2: auto with zarith.
ring.
rewrite Occ.occ_right_no_add. 2: auto with zarith. 2: ring_simplify (j+1-1)%Z; assumption.
rewrite (Occ.occ_right_no_add v (elts a2) i). 2: auto with zarith.
2: ring_simplify (i+1-1)%Z; rewrite <- hd; assumption.
ring_simplify (i+1-1)%Z. ring_simplify (j+1-1)%Z.
rewrite Occ.occ_empty. 2: auto with zarith. rewrite (Occ.occ_empty v (elts a2) i). 2: auto with zarith.
ring.
rewrite Occ.occ_right_no_add. 2: auto with zarith. 2: ring_simplify (i+1-1)%Z; assumption.
rewrite (Occ.occ_right_no_add v (elts a2) j). 2: auto with zarith.
2: ring_simplify (j+1-1)%Z; rewrite <- hc; assumption.
rewrite Occ.occ_empty. 2: auto with zarith. rewrite (Occ.occ_empty v (elts a2) j). 2: auto with zarith.
destruct (why_decidable_eq (elts a1 j) v).
rewrite Occ.occ_right_add. 2: auto with zarith. 2: ring_simplify (j+1-1)%Z; assumption.
rewrite (Occ.occ_right_add v (elts a2) i). 2: auto with zarith.
2: ring_simplify (i+1-1)%Z; rewrite <- hd; assumption.
ring_simplify (i+1-1)%Z. ring_simplify (j+1-1)%Z.
rewrite Occ.occ_empty. 2: auto with zarith. rewrite (Occ.occ_empty v (elts a2) i). 2: auto with zarith.
ring.
rewrite Occ.occ_right_no_add. 2: auto with zarith. 2: ring_simplify (j+1-1)%Z; assumption.
rewrite (Occ.occ_right_no_add v (elts a2) i). 2: auto with zarith.
2: ring_simplify (i+1-1)%Z; rewrite <- hd; assumption.
ring_simplify (i+1-1)%Z. ring_simplify (j+1-1)%Z.
rewrite Occ.occ_empty. 2: auto with zarith. rewrite (Occ.occ_empty v (elts a2) i). 2: auto with zarith.
ring.
generalize (Z.lt_total i j); intros [c|c].
(* i < j *)
assert (Occ.occ v (elts a1) l u = Occ.occ v (elts a1) l i + Occ.occ v (elts a1) i u)%Z.
apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a1) i u = Occ.occ v (elts a1) i (i+1) + Occ.occ v (elts a1) (i+1) u)%Z.
apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a1) (i+1) u = Occ.occ v (elts a1) (i+1) j + Occ.occ v (elts a1) j u)%Z.
apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a1) j u = Occ.occ v (elts a1) j (j+1) + Occ.occ v (elts a1) (j+1) u)%Z.
apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a2) l u = Occ.occ v (elts a2) l i + Occ.occ v (elts a2) i u)%Z.
apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a2) i u = Occ.occ v (elts a2) i (i+1) + Occ.occ v (elts a2) (i+1) u)%Z.
apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a2) (i+1) u = Occ.occ v (elts a2) (i+1) j + Occ.occ v (elts a2) j u)%Z.
apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a2) j u = Occ.occ v (elts a2) j (j+1) + Occ.occ v (elts a2) (j+1) u)%Z.
apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a1) l i = Occ.occ v (elts a2) l i).
apply Occ.occ_eq. intros. apply he; auto with zarith.
assert (Occ.occ v (elts a1) (i+1) j = Occ.occ v (elts a2) (i+1) j).
apply Occ.occ_eq. intros; apply he; auto with zarith.
assert (Occ.occ v (elts a1) (j+1) u = Occ.occ v (elts a2) (j+1) u).
apply Occ.occ_eq. intros; apply he; auto with zarith.
auto with zarith.
(* i = j *)
destruct c.
subst j.
apply Occ.occ_eq.
intros k hk.
generalize (Z.eq_dec k i); intros [c|c].
subst k. assumption.
apply he. auto with zarith. assumption. assumption.
(* j < i *)
assert (Occ.occ v (elts a1) l u = Occ.occ v (elts a1) l j + Occ.occ v (elts a1) j u)%Z.
apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a1) j u = Occ.occ v (elts a1) j (j+1) + Occ.occ v (elts a1) (j+1) u)%Z.
apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a1) (j+1) u = Occ.occ v (elts a1) (j+1) i + Occ.occ v (elts a1) i u)%Z.
apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a1) i u = Occ.occ v (elts a1) i (i+1) + Occ.occ v (elts a1) (i+1) u)%Z.
apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a2) l u = Occ.occ v (elts a2) l j + Occ.occ v (elts a2) j u)%Z.
apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a2) j u = Occ.occ v (elts a2) j (j+1) + Occ.occ v (elts a2) (j+1) u)%Z.
apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a2) (j+1) u = Occ.occ v (elts a2) (j+1) i + Occ.occ v (elts a2) i u)%Z.
apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a2) i u = Occ.occ v (elts a2) i (i+1) + Occ.occ v (elts a2) (i+1) u)%Z.
apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a1) l j = Occ.occ v (elts a2) l j).
apply Occ.occ_eq. intros. apply he; auto with zarith.
assert (Occ.occ v (elts a1) (j+1) i = Occ.occ v (elts a2) (j+1) i).
apply Occ.occ_eq. intros; apply he; auto with zarith.
assert (Occ.occ v (elts a1) (i+1) u = Occ.occ v (elts a2) (i+1) u).
apply Occ.occ_eq. intros; apply he; auto with zarith.
auto with zarith.
(* eq_sub *)
red. intros. apply he; auto with zarith.
Qed.
|