File: array_ArrayPermut_exchange_permut_sub_1.v

package info (click to toggle)
why3 1.8.2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 45,028 kB
  • sloc: xml: 185,443; ml: 111,224; ansic: 3,998; sh: 2,578; makefile: 2,568; java: 865; python: 720; javascript: 290; lisp: 205; pascal: 173
file content (245 lines) | stat: -rw-r--r-- 10,543 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
(* This file is generated by Why3's Coq driver *)
(* Beware! Only edit allowed sections below    *)
Require Import BuiltIn.
Require BuiltIn.
Require HighOrd.
Require int.Int.
Require map.Map.
Require map.Occ.
Require map.MapPermut.

Axiom array : forall (a:Type), Type.
Parameter array_WhyType :
  forall (a:Type) {a_WT:WhyType a}, WhyType (array a).
Existing Instance array_WhyType.

Parameter elts:
  forall {a:Type} {a_WT:WhyType a}, array a -> Numbers.BinNums.Z -> a.

Parameter length:
  forall {a:Type} {a_WT:WhyType a}, array a -> Numbers.BinNums.Z.

Axiom array'invariant :
  forall {a:Type} {a_WT:WhyType a},
  forall (self:array a), (0%Z <= (length self))%Z.

(* Why3 assumption *)
Definition mixfix_lbrb {a:Type} {a_WT:WhyType a} (a1:array a)
    (i:Numbers.BinNums.Z) : a :=
  elts a1 i.

Parameter mixfix_lblsmnrb:
  forall {a:Type} {a_WT:WhyType a}, array a -> Numbers.BinNums.Z -> a ->
  array a.

Axiom mixfix_lblsmnrb'spec'0 :
  forall {a:Type} {a_WT:WhyType a},
  forall (a1:array a) (i:Numbers.BinNums.Z) (v:a),
  ((length (mixfix_lblsmnrb a1 i v)) = (length a1)).

Axiom mixfix_lblsmnrb'spec :
  forall {a:Type} {a_WT:WhyType a},
  forall (a1:array a) (i:Numbers.BinNums.Z) (v:a),
  ((elts (mixfix_lblsmnrb a1 i v)) = (map.Map.set (elts a1) i v)).

Parameter make:
  forall {a:Type} {a_WT:WhyType a}, Numbers.BinNums.Z -> a -> array a.

Axiom make_spec :
  forall {a:Type} {a_WT:WhyType a},
  forall (n:Numbers.BinNums.Z) (v:a), (0%Z <= n)%Z ->
  (forall (i:Numbers.BinNums.Z), (0%Z <= i)%Z /\ (i < n)%Z ->
   ((mixfix_lbrb (make n v) i) = v)) /\
  ((length (make n v)) = n).

(* Why3 assumption *)
Definition map_eq_sub {a:Type} {a_WT:WhyType a} (a1:Numbers.BinNums.Z -> a)
    (a2:Numbers.BinNums.Z -> a) (l:Numbers.BinNums.Z) (u:Numbers.BinNums.Z) :
    Prop :=
  forall (i:Numbers.BinNums.Z), (l <= i)%Z /\ (i < u)%Z -> ((a1 i) = (a2 i)).

(* Why3 assumption *)
Definition array_eq_sub {a:Type} {a_WT:WhyType a} (a1:array a) (a2:array a)
    (l:Numbers.BinNums.Z) (u:Numbers.BinNums.Z) : Prop :=
  ((length a1) = (length a2)) /\
  ((0%Z <= l)%Z /\ (l <= (length a1))%Z) /\
  ((0%Z <= u)%Z /\ (u <= (length a1))%Z) /\
  map_eq_sub (elts a1) (elts a2) l u.

(* Why3 assumption *)
Definition array_eq {a:Type} {a_WT:WhyType a} (a1:array a) (a2:array a) :
    Prop :=
  ((length a1) = (length a2)) /\
  map_eq_sub (elts a1) (elts a2) 0%Z (length a1).

(* Why3 assumption *)
Definition exchange {a:Type} {a_WT:WhyType a} (a1:Numbers.BinNums.Z -> a)
    (a2:Numbers.BinNums.Z -> a) (l:Numbers.BinNums.Z) (u:Numbers.BinNums.Z)
    (i:Numbers.BinNums.Z) (j:Numbers.BinNums.Z) : Prop :=
  ((l <= i)%Z /\ (i < u)%Z) /\
  ((l <= j)%Z /\ (j < u)%Z) /\
  ((a1 i) = (a2 j)) /\
  ((a1 j) = (a2 i)) /\
  (forall (k:Numbers.BinNums.Z), (l <= k)%Z /\ (k < u)%Z -> ~ (k = i) ->
   ~ (k = j) -> ((a1 k) = (a2 k))).

Axiom exchange_set :
  forall {a:Type} {a_WT:WhyType a},
  forall (a1:Numbers.BinNums.Z -> a) (l:Numbers.BinNums.Z)
    (u:Numbers.BinNums.Z) (i:Numbers.BinNums.Z) (j:Numbers.BinNums.Z),
  (l <= i)%Z /\ (i < u)%Z -> (l <= j)%Z /\ (j < u)%Z ->
  exchange a1 (map.Map.set (map.Map.set a1 i (a1 j)) j (a1 i)) l u i j.

(* Why3 assumption *)
Definition exchange1 {a:Type} {a_WT:WhyType a} (a1:array a) (a2:array a)
    (i:Numbers.BinNums.Z) (j:Numbers.BinNums.Z) : Prop :=
  ((length a1) = (length a2)) /\
  exchange (elts a1) (elts a2) 0%Z (length a1) i j.

(* Why3 assumption *)
Definition permut {a:Type} {a_WT:WhyType a} (a1:array a) (a2:array a)
    (l:Numbers.BinNums.Z) (u:Numbers.BinNums.Z) : Prop :=
  ((length a1) = (length a2)) /\
  ((0%Z <= l)%Z /\ (l <= (length a1))%Z) /\
  ((0%Z <= u)%Z /\ (u <= (length a1))%Z) /\
  map.MapPermut.permut (elts a1) (elts a2) l u.

(* Why3 assumption *)
Definition permut_sub {a:Type} {a_WT:WhyType a} (a1:array a) (a2:array a)
    (l:Numbers.BinNums.Z) (u:Numbers.BinNums.Z) : Prop :=
  map_eq_sub (elts a1) (elts a2) 0%Z l /\
  permut a1 a2 l u /\ map_eq_sub (elts a1) (elts a2) u (length a1).

(* Why3 assumption *)
Definition permut_all {a:Type} {a_WT:WhyType a} (a1:array a) (a2:array a) :
    Prop :=
  ((length a1) = (length a2)) /\
  map.MapPermut.permut (elts a1) (elts a2) 0%Z (length a1).

(* Why3 goal *)
Theorem exchange_permut_sub {a:Type} {a_WT:WhyType a} :
  forall (a1:array a) (a2:array a) (i:Numbers.BinNums.Z)
    (j:Numbers.BinNums.Z) (l:Numbers.BinNums.Z) (u:Numbers.BinNums.Z),
  exchange1 a1 a2 i j -> (l <= i)%Z /\ (i < u)%Z ->
  (l <= j)%Z /\ (j < u)%Z -> (0%Z <= l)%Z -> (u <= (length a1))%Z ->
  permut_sub a1 a2 l u.
(* Why3 intros a1 a2 i j l u h1 (h2,h3) (h4,h5) h6 h7. *)
intros a1 a2 i j l u h1 (h2,h3) (h4,h5) h6 h7.
destruct h1 as (h11,h12).
destruct h12 as (ha,(hb,(hc,(hd,he)))).
red. repeat split.
(* eq_sub *)
red. intros. apply he; auto with zarith.
assumption. assumption. auto with zarith. auto with zarith. assumption.
(* permut *)
red. intro v.

assert (Occ.occ v (elts a1) i (i+1) + Occ.occ v (elts a1) j (j+1)
      = Occ.occ v (elts a2) i (i+1) + Occ.occ v (elts a2) j (j+1))%Z.
destruct (why_decidable_eq (elts a1 i) v).
rewrite Occ.occ_right_add. 2: auto with zarith. 2: ring_simplify (i+1-1)%Z; assumption.
rewrite (Occ.occ_right_add v (elts a2) j). 2: auto with zarith.
  2: ring_simplify (j+1-1)%Z; rewrite <- hc; assumption.
ring_simplify (i+1-1)%Z. ring_simplify (j+1-1)%Z.
rewrite Occ.occ_empty. 2: auto with zarith. rewrite (Occ.occ_empty v (elts a2) j). 2: auto with zarith.
destruct (why_decidable_eq (elts a1 j) v).
rewrite Occ.occ_right_add. 2: auto with zarith. 2: ring_simplify (j+1-1)%Z; assumption.
rewrite (Occ.occ_right_add v (elts a2) i). 2: auto with zarith.
  2: ring_simplify (i+1-1)%Z; rewrite <- hd; assumption.
ring_simplify (i+1-1)%Z. ring_simplify (j+1-1)%Z.
rewrite Occ.occ_empty. 2: auto with zarith. rewrite (Occ.occ_empty v (elts a2) i). 2: auto with zarith.
ring.
rewrite Occ.occ_right_no_add. 2: auto with zarith. 2: ring_simplify (j+1-1)%Z; assumption.
rewrite (Occ.occ_right_no_add v (elts a2) i). 2: auto with zarith.
  2: ring_simplify (i+1-1)%Z; rewrite <- hd; assumption.
ring_simplify (i+1-1)%Z. ring_simplify (j+1-1)%Z.
rewrite Occ.occ_empty. 2: auto with zarith. rewrite (Occ.occ_empty v (elts a2) i). 2: auto with zarith.
ring.
rewrite Occ.occ_right_no_add. 2: auto with zarith. 2: ring_simplify (i+1-1)%Z; assumption.
rewrite (Occ.occ_right_no_add v (elts a2) j). 2: auto with zarith.
  2: ring_simplify (j+1-1)%Z; rewrite <- hc; assumption.
rewrite Occ.occ_empty. 2: auto with zarith. rewrite (Occ.occ_empty v (elts a2) j). 2: auto with zarith.
destruct (why_decidable_eq (elts a1 j) v).
rewrite Occ.occ_right_add. 2: auto with zarith. 2: ring_simplify (j+1-1)%Z; assumption.
rewrite (Occ.occ_right_add v (elts a2) i). 2: auto with zarith.
  2: ring_simplify (i+1-1)%Z; rewrite <- hd; assumption.
ring_simplify (i+1-1)%Z. ring_simplify (j+1-1)%Z.
rewrite Occ.occ_empty. 2: auto with zarith. rewrite (Occ.occ_empty v (elts a2) i). 2: auto with zarith.
ring.
rewrite Occ.occ_right_no_add. 2: auto with zarith. 2: ring_simplify (j+1-1)%Z; assumption.
rewrite (Occ.occ_right_no_add v (elts a2) i). 2: auto with zarith.
  2: ring_simplify (i+1-1)%Z; rewrite <- hd; assumption.
ring_simplify (i+1-1)%Z. ring_simplify (j+1-1)%Z.
rewrite Occ.occ_empty. 2: auto with zarith. rewrite (Occ.occ_empty v (elts a2) i). 2: auto with zarith.
ring.

generalize (Z.lt_total i j); intros [c|c].
(* i < j *)
assert (Occ.occ v (elts a1) l u = Occ.occ v (elts a1) l i + Occ.occ v (elts a1) i u)%Z.
  apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a1) i u = Occ.occ v (elts a1) i (i+1) + Occ.occ v (elts a1) (i+1) u)%Z.
  apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a1) (i+1) u = Occ.occ v (elts a1) (i+1) j + Occ.occ v (elts a1) j u)%Z.
  apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a1) j u = Occ.occ v (elts a1) j (j+1) + Occ.occ v (elts a1) (j+1) u)%Z.
  apply Occ.occ_append. auto with zarith.

assert (Occ.occ v (elts a2) l u = Occ.occ v (elts a2) l i + Occ.occ v (elts a2) i u)%Z.
  apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a2) i u = Occ.occ v (elts a2) i (i+1) + Occ.occ v (elts a2) (i+1) u)%Z.
  apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a2) (i+1) u = Occ.occ v (elts a2) (i+1) j + Occ.occ v (elts a2) j u)%Z.
  apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a2) j u = Occ.occ v (elts a2) j (j+1) + Occ.occ v (elts a2) (j+1) u)%Z.
  apply Occ.occ_append. auto with zarith.

assert (Occ.occ v (elts a1) l i = Occ.occ v (elts a2) l i).
  apply Occ.occ_eq. intros. apply he; auto with zarith.
assert (Occ.occ v (elts a1) (i+1) j = Occ.occ v (elts a2) (i+1) j).
  apply Occ.occ_eq. intros; apply he; auto with zarith.
assert (Occ.occ v (elts a1) (j+1) u = Occ.occ v (elts a2) (j+1) u).
  apply Occ.occ_eq. intros; apply he; auto with zarith.

auto with zarith.

(* i = j *)
destruct c.
subst j.
apply Occ.occ_eq.
intros k hk.
generalize (Z.eq_dec k i); intros [c|c].
subst k. assumption.
apply he. auto with zarith. assumption. assumption.

(* j < i *)
assert (Occ.occ v (elts a1) l u = Occ.occ v (elts a1) l j + Occ.occ v (elts a1) j u)%Z.
  apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a1) j u = Occ.occ v (elts a1) j (j+1) + Occ.occ v (elts a1) (j+1) u)%Z.
  apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a1) (j+1) u = Occ.occ v (elts a1) (j+1) i + Occ.occ v (elts a1) i u)%Z.
  apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a1) i u = Occ.occ v (elts a1) i (i+1) + Occ.occ v (elts a1) (i+1) u)%Z.
  apply Occ.occ_append. auto with zarith.

assert (Occ.occ v (elts a2) l u = Occ.occ v (elts a2) l j + Occ.occ v (elts a2) j u)%Z.
  apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a2) j u = Occ.occ v (elts a2) j (j+1) + Occ.occ v (elts a2) (j+1) u)%Z.
  apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a2) (j+1) u = Occ.occ v (elts a2) (j+1) i + Occ.occ v (elts a2) i u)%Z.
  apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a2) i u = Occ.occ v (elts a2) i (i+1) + Occ.occ v (elts a2) (i+1) u)%Z.
  apply Occ.occ_append. auto with zarith.

assert (Occ.occ v (elts a1) l j = Occ.occ v (elts a2) l j).
  apply Occ.occ_eq. intros. apply he; auto with zarith.
assert (Occ.occ v (elts a1) (j+1) i = Occ.occ v (elts a2) (j+1) i).
  apply Occ.occ_eq. intros; apply he; auto with zarith.
assert (Occ.occ v (elts a1) (i+1) u = Occ.occ v (elts a2) (i+1) u).
  apply Occ.occ_eq. intros; apply he; auto with zarith.

auto with zarith.

(* eq_sub *)
red. intros. apply he; auto with zarith.
Qed.