File: array_ArrayPermut_permut_sub_weakening_2.v

package info (click to toggle)
why3 1.8.2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 45,028 kB
  • sloc: xml: 185,443; ml: 111,224; ansic: 3,998; sh: 2,578; makefile: 2,568; java: 865; python: 720; javascript: 290; lisp: 205; pascal: 173
file content (179 lines) | stat: -rw-r--r-- 6,618 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
(* This file is generated by Why3's Coq driver *)
(* Beware! Only edit allowed sections below    *)
Require Import BuiltIn.
Require BuiltIn.
Require HighOrd.
Require int.Int.
Require map.Map.
Require map.Occ.
Require map.MapPermut.

Axiom array : forall (a:Type), Type.
Parameter array_WhyType :
  forall (a:Type) {a_WT:WhyType a}, WhyType (array a).
Existing Instance array_WhyType.

Parameter elts:
  forall {a:Type} {a_WT:WhyType a}, array a -> Numbers.BinNums.Z -> a.

Parameter length:
  forall {a:Type} {a_WT:WhyType a}, array a -> Numbers.BinNums.Z.

Axiom array'invariant :
  forall {a:Type} {a_WT:WhyType a},
  forall (self:array a), (0%Z <= (length self))%Z.

(* Why3 assumption *)
Definition mixfix_lbrb {a:Type} {a_WT:WhyType a} (a1:array a)
    (i:Numbers.BinNums.Z) : a :=
  elts a1 i.

Parameter mixfix_lblsmnrb:
  forall {a:Type} {a_WT:WhyType a}, array a -> Numbers.BinNums.Z -> a ->
  array a.

Axiom mixfix_lblsmnrb'spec'0 :
  forall {a:Type} {a_WT:WhyType a},
  forall (a1:array a) (i:Numbers.BinNums.Z) (v:a),
  ((length (mixfix_lblsmnrb a1 i v)) = (length a1)).

Axiom mixfix_lblsmnrb'spec :
  forall {a:Type} {a_WT:WhyType a},
  forall (a1:array a) (i:Numbers.BinNums.Z) (v:a),
  ((elts (mixfix_lblsmnrb a1 i v)) = (map.Map.set (elts a1) i v)).

Parameter make:
  forall {a:Type} {a_WT:WhyType a}, Numbers.BinNums.Z -> a -> array a.

Axiom make_spec :
  forall {a:Type} {a_WT:WhyType a},
  forall (n:Numbers.BinNums.Z) (v:a), (0%Z <= n)%Z ->
  (forall (i:Numbers.BinNums.Z), (0%Z <= i)%Z /\ (i < n)%Z ->
   ((mixfix_lbrb (make n v) i) = v)) /\
  ((length (make n v)) = n).

(* Why3 assumption *)
Definition map_eq_sub {a:Type} {a_WT:WhyType a} (a1:Numbers.BinNums.Z -> a)
    (a2:Numbers.BinNums.Z -> a) (l:Numbers.BinNums.Z) (u:Numbers.BinNums.Z) :
    Prop :=
  forall (i:Numbers.BinNums.Z), (l <= i)%Z /\ (i < u)%Z -> ((a1 i) = (a2 i)).

(* Why3 assumption *)
Definition array_eq_sub {a:Type} {a_WT:WhyType a} (a1:array a) (a2:array a)
    (l:Numbers.BinNums.Z) (u:Numbers.BinNums.Z) : Prop :=
  ((length a1) = (length a2)) /\
  ((0%Z <= l)%Z /\ (l <= (length a1))%Z) /\
  ((0%Z <= u)%Z /\ (u <= (length a1))%Z) /\
  map_eq_sub (elts a1) (elts a2) l u.

(* Why3 assumption *)
Definition array_eq {a:Type} {a_WT:WhyType a} (a1:array a) (a2:array a) :
    Prop :=
  ((length a1) = (length a2)) /\
  map_eq_sub (elts a1) (elts a2) 0%Z (length a1).

(* Why3 assumption *)
Definition exchange {a:Type} {a_WT:WhyType a} (a1:Numbers.BinNums.Z -> a)
    (a2:Numbers.BinNums.Z -> a) (l:Numbers.BinNums.Z) (u:Numbers.BinNums.Z)
    (i:Numbers.BinNums.Z) (j:Numbers.BinNums.Z) : Prop :=
  ((l <= i)%Z /\ (i < u)%Z) /\
  ((l <= j)%Z /\ (j < u)%Z) /\
  ((a1 i) = (a2 j)) /\
  ((a1 j) = (a2 i)) /\
  (forall (k:Numbers.BinNums.Z), (l <= k)%Z /\ (k < u)%Z -> ~ (k = i) ->
   ~ (k = j) -> ((a1 k) = (a2 k))).

Axiom exchange_set :
  forall {a:Type} {a_WT:WhyType a},
  forall (a1:Numbers.BinNums.Z -> a) (l:Numbers.BinNums.Z)
    (u:Numbers.BinNums.Z) (i:Numbers.BinNums.Z) (j:Numbers.BinNums.Z),
  (l <= i)%Z /\ (i < u)%Z -> (l <= j)%Z /\ (j < u)%Z ->
  exchange a1 (map.Map.set (map.Map.set a1 i (a1 j)) j (a1 i)) l u i j.

(* Why3 assumption *)
Definition exchange1 {a:Type} {a_WT:WhyType a} (a1:array a) (a2:array a)
    (i:Numbers.BinNums.Z) (j:Numbers.BinNums.Z) : Prop :=
  ((length a1) = (length a2)) /\
  exchange (elts a1) (elts a2) 0%Z (length a1) i j.

(* Why3 assumption *)
Definition permut {a:Type} {a_WT:WhyType a} (a1:array a) (a2:array a)
    (l:Numbers.BinNums.Z) (u:Numbers.BinNums.Z) : Prop :=
  ((length a1) = (length a2)) /\
  ((0%Z <= l)%Z /\ (l <= (length a1))%Z) /\
  ((0%Z <= u)%Z /\ (u <= (length a1))%Z) /\
  map.MapPermut.permut (elts a1) (elts a2) l u.

(* Why3 assumption *)
Definition permut_sub {a:Type} {a_WT:WhyType a} (a1:array a) (a2:array a)
    (l:Numbers.BinNums.Z) (u:Numbers.BinNums.Z) : Prop :=
  map_eq_sub (elts a1) (elts a2) 0%Z l /\
  permut a1 a2 l u /\ map_eq_sub (elts a1) (elts a2) u (length a1).

(* Why3 assumption *)
Definition permut_all {a:Type} {a_WT:WhyType a} (a1:array a) (a2:array a) :
    Prop :=
  ((length a1) = (length a2)) /\
  map.MapPermut.permut (elts a1) (elts a2) 0%Z (length a1).

Axiom exchange_permut_sub :
  forall {a:Type} {a_WT:WhyType a},
  forall (a1:array a) (a2:array a) (i:Numbers.BinNums.Z)
    (j:Numbers.BinNums.Z) (l:Numbers.BinNums.Z) (u:Numbers.BinNums.Z),
  exchange1 a1 a2 i j -> (l <= i)%Z /\ (i < u)%Z ->
  (l <= j)%Z /\ (j < u)%Z -> (0%Z <= l)%Z -> (u <= (length a1))%Z ->
  permut_sub a1 a2 l u.

Axiom permut_sub_trans :
  forall {a:Type} {a_WT:WhyType a},
  forall (a1:array a) (a2:array a) (a3:array a) (l:Numbers.BinNums.Z)
    (u:Numbers.BinNums.Z),
  (0%Z <= l)%Z -> (u <= (length a1))%Z -> permut_sub a1 a2 l u ->
  permut_sub a2 a3 l u -> permut_sub a1 a3 l u.

(* Why3 goal *)
Theorem permut_sub_weakening {a:Type} {a_WT:WhyType a} :
  forall (a1:array a) (a2:array a) (l1:Numbers.BinNums.Z)
    (u1:Numbers.BinNums.Z) (l2:Numbers.BinNums.Z) (u2:Numbers.BinNums.Z),
  permut_sub a1 a2 l1 u1 -> (0%Z <= l2)%Z /\ (l2 <= l1)%Z ->
  (u1 <= u2)%Z /\ (u2 <= (length a1))%Z -> permut_sub a1 a2 l2 u2.
(* Why3 intros a1 a2 l1 u1 l2 u2 h1 (h2,h3) (h4,h5). *)
intros a1 a2 l1 u1 l2 u2 h1 (h2,h3) (h4,h5).
unfold permut_sub in *.
destruct h1 as (eql,(h1,eqr)).
unfold map_eq_sub in *.
split.
(* eq left *)
intros. apply eql; auto with zarith.
split.
(* permut *)
unfold permut in *.
destruct h1 as (h1,(h1a,(h1b,h1c))).
repeat split; try assumption. auto with zarith. auto with zarith.
unfold MapPermut.permut in *.
intros v.
generalize (Z_le_dec l1 u1); intros [c|c].
(* l1 <= u1 *)
assert (Occ.occ v (elts a1) l2 u2 = Occ.occ v (elts a1) l2 l1 + Occ.occ v (elts a1) l1 u2)%Z. 
  apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a1) l1 u2 = Occ.occ v (elts a1) l1 u1 + Occ.occ v (elts a1) u1 u2)%Z. 
  apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a2) l2 u2 = Occ.occ v (elts a2) l2 l1 + Occ.occ v (elts a2) l1 u2)%Z. 
  apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a2) l1 u2 = Occ.occ v (elts a2) l1 u1 + Occ.occ v (elts a2) u1 u2)%Z. 
  apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a1) l2 l1 = Occ.occ v (elts a2) l2 l1).
  apply Occ.occ_eq. intros; apply eql; auto with zarith.
assert (Occ.occ v (elts a1) u1 u2 = Occ.occ v (elts a2) u1 u2).
  apply Occ.occ_eq. intros; apply eqr; auto with zarith.
generalize (h1c v); auto with zarith.
(* u1 < l1 *)
apply Occ.occ_eq.
intros i hi.
generalize (Z_lt_dec i l1); intros [h|h].
apply eql; auto with zarith.
apply eqr; auto with zarith.
(* eq right *)
intros; apply eqr; auto with zarith.
Qed.