1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
|
(** {1 Subsequences}
A subsequence is a sequence that can be derived from another
sequence by deleting some or no elements without changing the order
of the remaining elements (Wikipedia).
Checking whether a word is a subsequence of another word can be done in
linear time (in the length of the second word) and is a nice example of
an optimal greedy algorithm.
Author: Jean-Christophe Filliâtre (CNRS)
*)
use int.Int
use map.Map
use seq.Seq
type char
type word = seq char
predicate subsequence (v u: word) (f: int -> int) =
(* f maps v's characters to u's characters *)
(forall i. 0 <= i < length v -> 0 <= f i < length u /\ v[i] = u[f i]) /\
(* in a strictly increasing way *)
(forall i j. 0 <= i < j < length v -> f i < f j)
val eq (x y: char) : bool ensures { result <-> x = y }
let is_subsequence (v u: word) : bool
ensures { result <-> exists f. subsequence v u f }
= let rec aux (i j: int) (ghost f: int -> int) : bool
requires { 0 <= i <= length v }
requires { 0 <= j <= length u }
requires { subsequence v[0..i] u[0..j] f }
requires { forall f. subsequence v u f -> i < length v -> f i >= j }
variant { length u - j }
ensures { result <-> exists f. subsequence v u f }
= i = length v ||
j < length u && if eq v[i] u[j] then aux (i+1) (j+1) (Map.set f i j)
else aux i (j+1) f
in
aux 0 0 (fun i -> i)
|