1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
|
(** {1 Range Sum Queries}
We are interested in specifying and proving correct
data structures that support efficient computation of the sum of the
values over an arbitrary range of an array.
Concretely, given an array of integers `a`, and given a range
delimited by indices `i` (inclusive) and `j` (exclusive), we wish
to compute the value: `\sum_{k=i}^{j-1} a[k]`.
In the first part, we consider a simple loop
for computing the sum in linear time.
In the second part, we introduce a cumulative sum array
that allows answering arbitrary range queries in constant time.
In the third part, we explore a tree data structure that
supports modification of values from the underlying array `a`,
with logarithmic time operations.
*)
(** {2 Specification of Range Sum} *)
module ArraySum
use int.Int
use array.Array
(** `sum a i j` denotes the sum `\sum_{i <= k < j} a[k]`.
It is axiomatizated by the two following axioms expressing
the recursive definition
if `i <= j` then `sum a i j = 0`
if `i < j` then `sum a i j = a[i] + sum a (i+1) j`
*)
let rec function sum (a:array int) (i j:int) : int
requires { 0 <= i <= j <= a.length }
variant { j - i }
= if j <= i then 0 else a[i] + sum a (i+1) j
(** lemma for summation from the right:
if `i < j` then `sum a i j = sum a i (j-1) + a[j-1]`
*)
lemma sum_right : forall a : array int, i j : int.
0 <= i < j <= a.length ->
sum a i j = sum a i (j-1) + a[j-1]
end
(** {2 First algorithm, a linear one} *)
module Simple
use int.Int
use array.Array
use ArraySum
use ref.Ref
(** `query a i j` returns the sum of elements in `a` between
index `i` inclusive and index `j` exclusive *)
let query (a:array int) (i j:int) : int
requires { 0 <= i <= j <= a.length }
ensures { result = sum a i j }
= let s = ref 0 in
for k=i to j-1 do
invariant { !s = sum a i k }
s := !s + a[k]
done;
!s
end
(** {2 Additional lemmas on `sum`}
needed in the remaining code *)
module ExtraLemmas
use int.Int
use array.Array
use ArraySum
(** summation in adjacent intervals *)
lemma sum_concat : forall a:array int, i j k:int.
0 <= i <= j <= k <= a.length ->
sum a i k = sum a i j + sum a j k
(** Frame lemma for `sum`, that is `sum a i j` depends only
of values of `a[i..j-1]` *)
lemma sum_frame : forall a1 a2 : array int, i j : int.
0 <= i <= j ->
j <= a1.length ->
j <= a2.length ->
(forall k : int. i <= k < j -> a1[k] = a2[k]) ->
sum a1 i j = sum a2 i j
(** Updated lemma for `sum`: how does `sum a i j` changes when
`a[k]` is changed for some `k` in `[i..j-1]` *)
lemma sum_update : forall a:array int, i v l h:int.
0 <= l <= i < h <= a.length ->
sum (a[i<-v]) l h = sum a l h + v - a[i]
end
(** {2 Algorithm 2: using a cumulative array}
creation of cumulative array is linear
query is in constant time
array update is linear
*)
module CumulativeArray
use int.Int
use array.Array
use ArraySum
use ExtraLemmas
predicate is_cumulative_array_for (c:array int) (a:array int) =
c.length = a.length + 1 /\
forall i. 0 <= i < c.length -> c[i] = sum a 0 i
(** `create a` builds the cumulative array associated with `a`. *)
let create (a:array int) : array int
ensures { is_cumulative_array_for result a }
= let l = a.length in
let s = Array.make (l+1) 0 in
for i=1 to l do
invariant { forall k. 0 <= k < i -> s[k] = sum a 0 k }
s[i] <- s[i-1] + a[i-1]
done;
s
(** `query c i j a` returns the sum of elements in `a` between
index `i` inclusive and index `j` exclusive, in constant time *)
let query (c:array int) (i j:int) (ghost a:array int): int
requires { is_cumulative_array_for c a }
requires { 0 <= i <= j < c.length }
ensures { result = sum a i j }
= c[j] - c[i]
(** `update c i v a` updates cell `a[i]` to value `v` and updates
the cumulative array `c` accordingly *)
let update (c:array int) (i:int) (v:int) (ghost a:array int) : unit
requires { is_cumulative_array_for c a }
requires { 0 <= i < a.length }
writes { c, a }
ensures { is_cumulative_array_for c a }
ensures { a[i] = v }
ensures { forall k. 0 <= k < a.length /\ k <> i ->
a[k] = (old a)[k] }
= let incr = v - c[i+1] + c[i] in
a[i] <- v;
for j=i+1 to c.length-1 do
invariant { forall k. j <= k < c.length -> c[k] = sum a 0 k - incr }
invariant { forall k. 0 <= k < j -> c[k] = sum a 0 k }
c[j] <- c[j] + incr
done
end
(** {2 Algorithm 3: using a cumulative tree}
creation is linear
query is logarithmic
update is logarithmic
*)
module CumulativeTree
use int.Int
use array.Array
use ArraySum
use ExtraLemmas
use int.ComputerDivision
type indexes =
{ low : int;
high : int;
isum : int;
}
type tree = Leaf indexes | Node indexes tree tree
let function indexes (t:tree) : indexes =
match t with
| Leaf ind -> ind
| Node ind _ _ -> ind
end
predicate is_indexes_for (ind:indexes) (a:array int) (i j:int) =
ind.low = i /\ ind.high = j /\
0 <= i < j <= a.length /\
ind.isum = sum a i j
predicate is_tree_for (t:tree) (a:array int) (i j:int) =
match t with
| Leaf ind ->
is_indexes_for ind a i j /\ j = i+1
| Node ind l r ->
is_indexes_for ind a i j /\
i = l.indexes.low /\ j = r.indexes.high /\
let m = l.indexes.high in
m = r.indexes.low /\
i < m < j /\ m = div (i+j) 2 /\
is_tree_for l a i m /\
is_tree_for r a m j
end
(** {3 creation of cumulative tree} *)
let rec tree_of_array (a:array int) (i j:int) : tree
requires { 0 <= i < j <= a.length }
variant { j - i }
ensures { is_tree_for result a i j }
= if i+1=j then begin
Leaf { low = i; high = j; isum = a[i] }
end
else
begin
let m = div (i+j) 2 in
assert { i < m < j };
let l = tree_of_array a i m in
let r = tree_of_array a m j in
let s = l.indexes.isum + r.indexes.isum in
assert { s = sum a i j };
Node { low = i; high = j; isum = s} l r
end
let create (a:array int) : tree
requires { a.length >= 1 }
ensures { is_tree_for result a 0 a.length }
= tree_of_array a 0 a.length
(** {3 query using cumulative tree} *)
let rec query_aux (t:tree) (ghost a: array int)
(i j:int) : int
requires { is_tree_for t a t.indexes.low t.indexes.high }
requires { 0 <= t.indexes.low <= i < j <= t.indexes.high <= a.length }
variant { t }
ensures { result = sum a i j }
= match t with
| Leaf ind ->
ind.isum
| Node ind l r ->
let k1 = ind.low in
let k3 = ind.high in
if i=k1 && j=k3 then ind.isum else
let m = l.indexes.high in
if j <= m then query_aux l a i j else
if i >= m then query_aux r a i j else
query_aux l a i m + query_aux r a m j
end
let query (t:tree) (ghost a: array int) (i j:int) : int
requires { 0 <= i <= j <= a.length }
requires { is_tree_for t a 0 a.length }
ensures { result = sum a i j }
= if i=j then 0 else query_aux t a i j
(** frame lemma for predicate `is_tree_for` *)
lemma is_tree_for_frame : forall t:tree, a:array int, k v i j:int.
0 <= k < a.length ->
k < i \/ k >= j ->
is_tree_for t a i j ->
is_tree_for t a[k<-v] i j
(** {3 update cumulative tree} *)
let rec update_aux
(t:tree) (i:int) (ghost a :array int) (v:int) : (t': tree, delta: int)
requires { is_tree_for t a t.indexes.low t.indexes.high }
requires { t.indexes.low <= i < t.indexes.high }
variant { t }
ensures {
delta = v - a[i] /\
t'.indexes.low = t.indexes.low /\
t'.indexes.high = t.indexes.high /\
is_tree_for t' a[i<-v] t'.indexes.low t'.indexes.high }
= match t with
| Leaf ind ->
assert { i = ind.low };
(Leaf { ind with isum = v }, v - ind.isum)
| Node ind l r ->
let m = l.indexes.high in
if i < m then
let l',delta = update_aux l i a v in
assert { is_tree_for l' a[i<-v] t.indexes.low m };
assert { is_tree_for r a[i<-v] m t.indexes.high };
(Node {ind with isum = ind.isum + delta } l' r, delta)
else
let r',delta = update_aux r i a v in
assert { is_tree_for l a[i<-v] t.indexes.low m };
assert { is_tree_for r' a[i<-v] m t.indexes.high };
(Node {ind with isum = ind.isum + delta} l r',delta)
end
let update (t:tree) (ghost a:array int) (i v:int) : tree
requires { 0 <= i < a.length }
requires { is_tree_for t a 0 a.length }
writes { a }
ensures { a[i] = v }
ensures { forall k. 0 <= k < a.length /\ k <> i -> a[k] = (old a)[k] }
ensures { is_tree_for result a 0 a.length }
= let t,_ = update_aux t i a v in
assert { is_tree_for t a[i <- v] 0 a.length };
a[i] <- v;
t
(** {2 complexity analysis}
We would like to prove that `query` is really logarithmic. This is
non-trivial because there are two recursive calls in some cases.
So far, we are only able to prove that `update` is logarithmic
We express the complexity by passing a "credit" as a ghost
parameter. We pose the precondition that the credit is at least
equal to the depth of the tree.
*)
(** preliminaries: definition of the depth of a tree, and showing
that it is indeed logarithmic in function of the number of its
elements *)
use int.MinMax
function depth (t:tree) : int =
match t with
| Leaf _ -> 1
| Node _ l r -> 1 + max (depth l) (depth r)
end
lemma depth_min : forall t. depth t >= 1
use bv.Pow2int
let rec lemma depth_is_log (t:tree) (a :array int) (k:int)
requires { k >= 0 }
requires { is_tree_for t a t.indexes.low t.indexes.high }
requires { t.indexes.high - t.indexes.low <= pow2 k }
variant { t }
ensures { depth t <= k+1 }
= match t with
| Leaf _ -> ()
| Node _ l r ->
depth_is_log l a (k-1);
depth_is_log r a (k-1)
end
(** `update_aux` function instrumented with a credit *)
use ref.Ref
let rec update_aux_complexity
(t:tree) (i:int) (ghost a :array int)
(v:int) (ghost c:ref int) : (t': tree, delta: int)
requires { is_tree_for t a t.indexes.low t.indexes.high }
requires { t.indexes.low <= i < t.indexes.high }
variant { t }
ensures { !c - old !c <= depth t }
ensures {
delta = v - a[i] /\
t'.indexes.low = t.indexes.low /\
t'.indexes.high = t.indexes.high /\
is_tree_for t' a[i<-v] t'.indexes.low t'.indexes.high }
= c := !c + 1;
match t with
| Leaf ind ->
assert { i = ind.low };
(Leaf { ind with isum = v }, v - ind.isum)
| Node ind l r ->
let m = l.indexes.high in
if i < m then
let l',delta = update_aux_complexity l i a v c in
assert { is_tree_for l' a[i<-v] t.indexes.low m };
assert { is_tree_for r a[i<-v] m t.indexes.high };
(Node {ind with isum = ind.isum + delta } l' r, delta)
else
let r',delta = update_aux_complexity r i a v c in
assert { is_tree_for l a[i<-v] t.indexes.low m };
assert { is_tree_for r' a[i<-v] m t.indexes.high };
(Node {ind with isum = ind.isum + delta} l r',delta) (*>*)
end
(** `query_aux` function instrumented with a credit *)
let rec query_aux_complexity (t:tree) (ghost a: array int)
(i j:int) (ghost c:ref int) : int
requires { is_tree_for t a t.indexes.low t.indexes.high }
requires { 0 <= t.indexes.low <= i < j <= t.indexes.high <= a.length }
variant { t }
ensures { !c - old !c <=
if i = t.indexes.low /\ j = t.indexes.high then 1 else
if i = t.indexes.low \/ j = t.indexes.high then 2 * depth t else
4 * depth t }
ensures { result = sum a i j }
= c := !c + 1;
match t with
| Leaf ind ->
ind.isum
| Node ind l r ->
let k1 = ind.low in
let k3 = ind.high in
if i=k1 && j=k3 then ind.isum else
let m = l.indexes.high in
if j <= m then query_aux_complexity l a i j c else
if i >= m then query_aux_complexity r a i j c else
query_aux_complexity l a i m c + query_aux_complexity r a m j c
end
end
|