File: sumrange.mlw

package info (click to toggle)
why3 1.8.2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 45,028 kB
  • sloc: xml: 185,443; ml: 111,224; ansic: 3,998; sh: 2,578; makefile: 2,568; java: 865; python: 720; javascript: 290; lisp: 205; pascal: 173
file content (453 lines) | stat: -rw-r--r-- 12,427 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453

(** {1 Range Sum Queries}

We are interested in specifying and proving correct
data structures that support efficient computation of the sum of the
values over an arbitrary range of an array.
Concretely, given an array of integers `a`, and given a range
delimited by indices `i` (inclusive) and `j` (exclusive), we wish
to compute the value: `\sum_{k=i}^{j-1} a[k]`.

In the first part, we consider a simple loop
for computing the sum in linear time.

In the second part, we introduce a cumulative sum array
that allows answering arbitrary range queries in constant time.

In the third part, we explore a tree data structure that
supports modification of values from the underlying array `a`,
with logarithmic time operations.

*)


(** {2 Specification of Range Sum} *)

module ArraySum

  use int.Int
  use array.Array

  (** `sum a i j` denotes the sum `\sum_{i <= k < j} a[k]`.
      It is axiomatizated by the two following axioms expressing
      the recursive definition

      if `i <= j` then `sum a i j = 0`

      if `i < j` then `sum a i j = a[i] + sum a (i+1) j`

  *)
  let rec function sum (a:array int) (i j:int) : int
   requires { 0 <= i <= j <= a.length }
   variant { j - i }
   = if j <= i then 0 else a[i] + sum a (i+1) j

  (** lemma for summation from the right:

      if `i < j` then `sum a i j = sum a i (j-1) + a[j-1]`

 *)
  lemma sum_right : forall a : array int, i j : int.
    0 <= i < j <= a.length  ->
    sum a i j = sum a i (j-1) + a[j-1]

end




(** {2 First algorithm, a linear one} *)

module Simple

  use int.Int
  use array.Array
  use ArraySum
  use ref.Ref

  (** `query a i j` returns the sum of elements in `a` between
      index `i` inclusive and index `j` exclusive *)
  let query (a:array int) (i j:int) : int
    requires { 0 <= i <= j <= a.length }
    ensures { result = sum a i j }
  = let s = ref 0 in
    for k=i to j-1 do
      invariant { !s = sum a i k }
      s := !s + a[k]
    done;
    !s

end




(** {2 Additional lemmas on `sum`}
  needed in the remaining code *)

module ExtraLemmas

  use int.Int
  use array.Array
  use ArraySum

  (** summation in adjacent intervals *)
  lemma sum_concat : forall a:array int, i j k:int.
    0 <= i <= j <= k <= a.length ->
    sum a i k = sum a i j + sum a j k

  (** Frame lemma for `sum`, that is `sum a i j` depends only
      of values of `a[i..j-1]` *)
  lemma sum_frame : forall a1 a2 : array int, i j : int.
    0 <= i <= j ->
    j <= a1.length ->
    j <= a2.length ->
    (forall k : int. i <= k < j -> a1[k] = a2[k]) ->
    sum a1 i j = sum a2 i j

  (** Updated lemma for `sum`: how does `sum a i j` changes when
      `a[k]` is changed for some `k` in `[i..j-1]` *)
  lemma sum_update : forall a:array int, i v l h:int.
    0 <= l <= i < h <= a.length ->
    sum (a[i<-v]) l h = sum a l h + v - a[i]


end




(** {2 Algorithm 2: using a cumulative array}

   creation of cumulative array is linear

   query is in constant time

   array update is linear

*)


module CumulativeArray

  use int.Int
  use array.Array
  use ArraySum
  use ExtraLemmas

  predicate is_cumulative_array_for (c:array int) (a:array int) =
    c.length = a.length + 1 /\
    forall i. 0 <= i < c.length -> c[i] = sum a 0 i

  (** `create a` builds the cumulative array associated with `a`. *)
  let create (a:array int) : array int
    ensures { is_cumulative_array_for result a }
  = let l = a.length in
    let s = Array.make (l+1) 0 in
    for i=1 to l do
      invariant { forall k. 0 <= k < i -> s[k] = sum a 0 k }
      s[i] <- s[i-1] + a[i-1]
    done;
    s

  (** `query c i j a` returns the sum of elements in `a` between
      index `i` inclusive and index `j` exclusive, in constant time *)
  let query (c:array int) (i j:int) (ghost a:array int): int
    requires { is_cumulative_array_for c a }
    requires { 0 <= i <= j < c.length }
    ensures { result = sum a i j }
  = c[j] - c[i]


  (** `update c i v a` updates cell `a[i]` to value `v` and updates
      the cumulative array `c` accordingly *)
  let update (c:array int) (i:int) (v:int) (ghost a:array int) : unit
    requires { is_cumulative_array_for c a }
    requires { 0 <= i < a.length }
    writes  { c, a }
    ensures { is_cumulative_array_for c a }
    ensures { a[i] = v }
    ensures { forall k. 0 <= k < a.length /\ k <> i ->
              a[k] = (old a)[k] }
  = let incr = v - c[i+1] + c[i] in
    a[i] <- v;
    for j=i+1 to c.length-1 do
      invariant { forall k. j <= k < c.length -> c[k] = sum a 0 k - incr }
      invariant { forall k. 0 <= k < j -> c[k] = sum a 0 k }
      c[j] <- c[j] + incr
    done

end






(** {2 Algorithm 3: using a cumulative tree}

  creation is linear

  query is logarithmic

  update is logarithmic

*)




module CumulativeTree

  use int.Int
  use array.Array
  use ArraySum
  use ExtraLemmas
  use int.ComputerDivision

  type indexes =
    { low : int;
      high : int;
      isum : int;
    }

  type tree = Leaf indexes | Node indexes tree tree

  let function indexes (t:tree) : indexes =
    match t with
    | Leaf ind -> ind
    | Node ind _ _ -> ind
    end

  predicate is_indexes_for (ind:indexes) (a:array int) (i j:int) =
    ind.low = i /\ ind.high = j /\
    0 <= i < j <= a.length /\
    ind.isum = sum a i j

  predicate is_tree_for (t:tree) (a:array int) (i j:int) =
    match t with
    | Leaf ind ->
        is_indexes_for ind a i j /\ j = i+1
    | Node ind l r ->
        is_indexes_for ind a i j /\
        i = l.indexes.low /\ j = r.indexes.high /\
        let m = l.indexes.high in
        m = r.indexes.low /\
        i < m < j /\ m = div (i+j) 2 /\
        is_tree_for l a i m /\
        is_tree_for r a m j
    end

  (** {3 creation of cumulative tree} *)

  let rec tree_of_array (a:array int) (i j:int) : tree
    requires { 0 <= i < j <= a.length }
    variant { j - i }
    ensures { is_tree_for result a i j }
    = if i+1=j then begin
       Leaf { low = i; high = j; isum = a[i] }
       end
      else
        begin
        let m = div (i+j) 2 in
        assert { i < m < j };
        let l = tree_of_array a i m in
        let r = tree_of_array a m j in
        let s = l.indexes.isum + r.indexes.isum in
        assert { s = sum a i j };
        Node { low = i; high = j; isum = s} l r
        end


  let create (a:array int) : tree
    requires { a.length >= 1 }
    ensures { is_tree_for result a 0 a.length }
  = tree_of_array a 0 a.length


(** {3 query using cumulative tree} *)


  let rec query_aux (t:tree) (ghost a: array int)
      (i j:int) : int
    requires { is_tree_for t a t.indexes.low t.indexes.high }
    requires { 0 <= t.indexes.low <= i < j <= t.indexes.high <= a.length }
    variant { t }
    ensures { result = sum a i j }
  = match t with
    | Leaf ind ->
      ind.isum
    | Node ind l r ->
      let k1 = ind.low in
      let k3 = ind.high in
      if i=k1 && j=k3 then ind.isum else
      let m = l.indexes.high in
      if j <= m then query_aux l a i j else
      if i >= m then query_aux r a i j else
      query_aux l a i m + query_aux r a m j
    end


  let query (t:tree) (ghost a: array int) (i j:int) : int
    requires { 0 <= i <= j <= a.length }
    requires { is_tree_for t a 0 a.length }
    ensures { result = sum a i j }
  = if i=j then 0 else query_aux t a i j


  (** frame lemma for predicate `is_tree_for` *)
  lemma is_tree_for_frame : forall t:tree, a:array int, k v i j:int.
    0 <= k < a.length ->
    k < i \/ k >= j ->
    is_tree_for t a i j ->
    is_tree_for t a[k<-v] i j

(** {3 update cumulative tree} *)


  let rec update_aux
      (t:tree) (i:int) (ghost a :array int) (v:int) : (t': tree, delta: int)
    requires { is_tree_for t a t.indexes.low t.indexes.high }
    requires { t.indexes.low <= i < t.indexes.high }
    variant { t }
    ensures {
        delta = v - a[i] /\
        t'.indexes.low = t.indexes.low /\
        t'.indexes.high = t.indexes.high /\
        is_tree_for t' a[i<-v] t'.indexes.low t'.indexes.high }
  = match t with
    | Leaf ind ->
        assert { i = ind.low };
        (Leaf { ind with isum = v }, v - ind.isum)
    | Node ind l r ->
        let m = l.indexes.high in
      if i < m then
        let l',delta = update_aux l i a v in
        assert { is_tree_for l' a[i<-v] t.indexes.low m };
        assert { is_tree_for r a[i<-v] m t.indexes.high };
        (Node {ind with isum = ind.isum + delta } l' r, delta)
      else
        let r',delta = update_aux r i a v in
        assert { is_tree_for l a[i<-v] t.indexes.low m };
        assert { is_tree_for r' a[i<-v] m t.indexes.high };
        (Node {ind with isum = ind.isum + delta} l r',delta)
    end

  let update (t:tree) (ghost a:array int) (i v:int) : tree
     requires { 0 <= i < a.length }
     requires { is_tree_for t a 0 a.length }
     writes { a }
     ensures { a[i] = v }
     ensures { forall k. 0 <= k < a.length /\ k <> i -> a[k] = (old a)[k] }
     ensures { is_tree_for result a 0 a.length }
  = let t,_ = update_aux t i a v in
    assert { is_tree_for t a[i <- v] 0 a.length };
    a[i] <- v;
    t


(** {2 complexity analysis}

  We would like to prove that `query` is really logarithmic. This is
  non-trivial because there are two recursive calls in some cases.

  So far, we are only able to prove that `update` is logarithmic

  We express the complexity by passing a "credit" as a ghost
  parameter. We pose the precondition that the credit is at least
  equal to the depth of the tree.

*)

  (** preliminaries: definition of the depth of a tree, and showing
      that it is indeed logarithmic in function of the number of its
      elements *)

  use int.MinMax

  function depth (t:tree) : int =
    match t with
    | Leaf _ -> 1
    | Node _ l r -> 1 + max (depth l) (depth r)
    end

  lemma depth_min : forall t. depth t >= 1

  use bv.Pow2int

  let rec lemma depth_is_log (t:tree) (a :array int) (k:int)
     requires { k >= 0 }
     requires { is_tree_for t a t.indexes.low t.indexes.high }
     requires { t.indexes.high - t.indexes.low <= pow2 k }
     variant { t }
     ensures { depth t <= k+1 }
  = match t with
    | Leaf _ -> ()
    | Node _ l r ->
       depth_is_log l a (k-1);
       depth_is_log r a (k-1)
    end


  (** `update_aux` function instrumented with a credit *)

  use ref.Ref

  let rec update_aux_complexity
        (t:tree) (i:int) (ghost a :array int)
        (v:int) (ghost c:ref int) : (t': tree, delta: int)
     requires { is_tree_for t a t.indexes.low t.indexes.high }
     requires { t.indexes.low <= i < t.indexes.high }
     variant { t }
     ensures { !c - old !c <= depth t }
     ensures {
        delta = v - a[i] /\
        t'.indexes.low = t.indexes.low /\
        t'.indexes.high = t.indexes.high /\
        is_tree_for t' a[i<-v] t'.indexes.low t'.indexes.high }
  = c := !c + 1;
    match t with
    | Leaf ind ->
      assert { i = ind.low };
      (Leaf { ind with isum = v }, v - ind.isum)
    | Node ind l r ->
      let m = l.indexes.high in
      if i < m then
        let l',delta = update_aux_complexity l i a v c in
        assert { is_tree_for l' a[i<-v] t.indexes.low m };
        assert { is_tree_for r a[i<-v] m t.indexes.high };
        (Node {ind with isum = ind.isum + delta } l' r, delta)
      else
        let r',delta = update_aux_complexity r i a v c in
        assert { is_tree_for l a[i<-v] t.indexes.low m };
        assert { is_tree_for r' a[i<-v] m t.indexes.high };
        (Node {ind with isum = ind.isum + delta} l r',delta) (*>*)
    end

  (** `query_aux` function instrumented with a credit *)

  let rec query_aux_complexity (t:tree) (ghost a: array int)
      (i j:int) (ghost c:ref int) : int
    requires { is_tree_for t a t.indexes.low t.indexes.high }
    requires { 0 <= t.indexes.low <= i < j <= t.indexes.high <= a.length }
    variant { t }
    ensures { !c - old !c <=
         if i = t.indexes.low /\ j = t.indexes.high then 1 else
         if i = t.indexes.low \/ j = t.indexes.high then 2 * depth t else
          4 * depth t }
    ensures { result = sum a i j }
  = c := !c + 1;
    match t with
    | Leaf ind ->
      ind.isum
    | Node ind l r ->
      let k1 = ind.low in
      let k3 = ind.high in
      if i=k1 && j=k3 then ind.isum else
      let m = l.indexes.high in
      if j <= m then query_aux_complexity l a i j c else
      if i >= m then query_aux_complexity r a i j c else
      query_aux_complexity l a i m c + query_aux_complexity r a m j c
    end

end