1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
|
(** Computing the height of a tree in CPS style
(author: Jean-Christophe Filliâtre) *)
module HeightCPS
use int.Int
use int.MinMax
use bintree.Tree
use bintree.Height
let rec height_cps (t: tree 'a) (k: int -> 'b) : 'b
variant { t }
ensures { result = k (height t) }
= match t with
| Empty -> k 0
| Node l _ r ->
height_cps l (fun hl ->
height_cps r (fun hr ->
k (1 + max hl hr)))
end
let height (t: tree 'a) : int
ensures { result = height t }
= height_cps t (fun h -> h)
end
(** with a while loop, manually obtained by compiling out recursion *)
module Iteration
use int.Int
use int.MinMax
use list.List
use bintree.Tree
use bintree.Size
use bintree.Height
use ref.Ref
type cont 'a = Id | Kleft (tree 'a) (cont 'a) | Kright int (cont 'a)
type what 'a = Argument (tree 'a) | Result int
let predicate is_id (k: cont 'a) =
match k with Id -> true | _ -> false end
let predicate is_result (w: what 'a) =
match w with Result _ -> true | _ -> false end
function evalk (k: cont 'a) (r: int) : int =
match k with
| Id -> r
| Kleft l k -> evalk k (1 + max (height l) r)
| Kright x k -> evalk k (1 + max x r)
end
function evalw (w: what 'a) : int =
match w with
| Argument t -> height t
| Result x -> x
end
function sizek (k: cont 'a) : int =
match k with
| Id -> 0
| Kleft t k -> 3 + 4 * size t + sizek k
| Kright _ k -> 1 + sizek k
end
lemma sizek_nonneg: forall k: cont 'a. sizek k >= 0
function sizew (w: what 'a) : int =
match w with
| Argument t -> 1 + 4 * size t
| Result _ -> 0
end
lemma helper1: forall t: tree 'a. 4 * size t >= 0
lemma sizew_nonneg: forall w: what 'a. sizew w >= 0
let height1 (t: tree 'a) : int
ensures { result = height t }
=
let w = ref (Argument t) in
let k = ref Id in
while not (is_id !k && is_result !w) do
invariant { evalk !k (evalw !w) = height t }
variant { sizek !k + sizew !w }
match !w, !k with
| Argument Empty, _ -> w := Result 0
| Argument (Node l _ r), _ -> w := Argument l; k := Kleft r !k
| Result _, Id -> absurd
| Result v, Kleft r k0 -> w := Argument r; k := Kright v k0
| Result v, Kright hl k0 -> w := Result (1 + max hl v); k := k0
end
done;
match !w with Result r -> r | _ -> absurd end
end
(** Computing the height of a tree with an explicit stack
(code: Andrei Paskevich / proof: Jean-Christophe Filliâtre) *)
module HeightStack
use int.Int
use int.MinMax
use list.List
use bintree.Tree
use bintree.Size
use bintree.Height
type stack 'a = list (int, tree 'a)
function heights (s: stack 'a) : int =
match s with
| Nil -> 0
| Cons (h, t) s' -> max (h + height t) (heights s')
end
function sizes (s: stack 'a) : int =
match s with
| Nil -> 0
| Cons (_, t) s' -> size t + sizes s'
end
lemma sizes_nonneg: forall s: stack 'a. sizes s >= 0
let rec height_stack (m: int) (s: stack 'a) : int
requires { m >= 0 }
variant { sizes s, s }
ensures { result = max m (heights s) }
= match s with
| Nil -> m
| Cons (h, Empty) s' -> height_stack (max m h) s'
| Cons (h, Node l _ r) s' -> height_stack m (Cons (h+1,l) (Cons (h+1,r) s'))
end
let height1 (t: tree 'a) : int
ensures { result = height t }
= height_stack 0 (Cons (0, t) Nil)
end
(** Computing the height of a tree with a small amount of memory:
Stack size is only proportional to the logarithm of the tree size.
(author: Martin Clochard) *)
module HeightSmallSpace
use int.Int
use int.MinMax
use int.ComputerDivision
use option.Option
use bintree.Tree
use bintree.Size
use bintree.Height
(** Count number of leaves in a tree. *)
function leaves (t: tree 'a) : int = 1 + size t
(** `height_limited acc depth lim t`:
Compute the `height t` if the number of leaves in `t` is at most `lim`,
fails otherwise. `acc` and `depth` are accumulators.
For maintaining the limit within the recursion, this routine
also send back the difference between the number of leaves and
the limit in case of success.
Method: find out one child with number of leaves at most `lim/2` using
recursive calls. If no such child is found, the tree has at
least `lim+1` leaves, hence fails. Otherwise, accumulate the result
of the recursive call for that child and make a recursive tail-call
for the other child, using the computed difference in order to
update `lim`. Since non-tail-recursive calls halve the limit,
the space complexity is logarithmic in `lim`.
Note that as is, this has a degenerate case:
if the small child is extremely small, we may waste a lot
of computing time on the large child to notice it is large,
while in the end processing only the small child until the
tail-recursive call. Analysis shows that this results in
super-polynomial time behavior (recursion T(N) = T(N/2)+T(N-1))
To mitigate this, we perform recursive calls on all `lim/2^k` limits
in increasing order (see process_small_child subroutine), until
one succeed or maximal limits both fails. This way,
the time spent by a single phase of the algorithm is representative
of the size of the processed set of nodes.
Time complexity: open
*)
let rec height_limited (acc depth lim: int) (t:tree 'a) : option (int,int)
requires { 0 < lim /\ 0 <= acc }
returns { None -> leaves t > lim
| Some (res,dl) -> res = max acc (depth + height t)
/\ lim = leaves t + dl /\ 0 <= dl }
variant { lim }
= match t with
| Empty -> Some (max acc depth,lim-1)
| Node l _ r ->
let rec process_small_child (limc: int) : option (int,int,tree 'a)
requires { 0 <= limc < lim }
returns { None -> leaves l > limc /\ leaves r > limc
| Some (h,sz,rm) -> height t = 1 + max h (height rm)
/\ leaves t = leaves rm + sz
/\ 0 < sz <= limc }
variant { limc }
= if limc = 0 then None else
match process_small_child (div limc 2) with
| (Some _) as s -> s
| None -> match height_limited 0 0 limc l with
| Some (h,dl) -> Some (h,limc-dl,r)
| None -> match height_limited 0 0 limc r with
| Some (h,dl) -> Some (h,limc-dl,l)
| None -> None
end end end
in
let limc = div lim 2 in
match process_small_child limc with
| None -> None
| Some (h,sz,rm) ->
height_limited (max acc (depth + h + 1)) (depth+1) (lim-sz) rm
end
end
use ref.Ref
let height (t: tree 'a) : int
ensures { result = height t }
= let lim = ref 1 in
while true do
invariant { !lim > 0 }
variant { leaves t - !lim }
match height_limited 0 0 !lim t with
| None -> lim := !lim * 2
| Some (h,_) -> return h
end
done; absurd
end
|