1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
|
formula 1 is: true \/ false
formula 2 is: A /\ B -> A
task 1 is:
theory Task
goal goal1 : true \/ false
end
task 2 created:
theory Task
predicate A
predicate B
goal goal2 : A /\ B -> A
end
Versions of Alt-Ergo found: <hidden>
On task 1, Alt-Ergo answers Valid (<hidden>s, <hidden> steps)
On task 2, Alt-Ergo answers Valid in <hidden> seconds, <hidden> steps
task 3 created
On task 3, Alt-Ergo answers Valid (<hidden>s, <hidden> steps)
On task 4, Alt-Ergo answers Valid (<hidden>s, <hidden> steps)
creating theory 'My_theory'
adding goal 1
adding goal 2
adding goal 3
adding goal 4
my new theory is as follows:
theory My_theory
(* use why3.BuiltIn.BuiltIn *)
goal goal1 : true \/ false
predicate A
predicate B
goal goal2 : A /\ B -> A
(* use int.Int *)
goal goal3 : (2 + 2) = 4
goal goal4 : forall x:int. (x * x) >= 0
end
Tasks are:
== Task 1 ==
theory Task
type int
type real
type string
predicate (=) 'a 'a
(* use why3.BuiltIn.BuiltIn *)
predicate A
predicate B
type bool =
| True
| False
(* use why3.Bool.Bool *)
type tuple0 =
| Tuple0
(* use why3.Tuple0.Tuple01 *)
type unit = unit
(* use why3.Unit.Unit *)
constant zero : int = 0
constant one : int = 1
function (-_) int : int
function (+) int int : int
function ( * ) int int : int
predicate (<) int int
function (-) (x:int) (y:int) : int = x + (- y)
predicate (>) (x:int) (y:int) = y < x
predicate (<=) (x:int) (y:int) = x < y \/ x = y
predicate (>=) (x:int) (y:int) = y <= x
axiom Assoc : forall x:int, y:int, z:int. ((x + y) + z) = (x + (y + z))
(* clone algebra.Assoc with type t = int, function op = (+),
prop Assoc1 = Assoc, *)
axiom Unit_def_l : forall x:int. (zero + x) = x
axiom Unit_def_r : forall x:int. (x + zero) = x
(* clone algebra.Monoid with type t1 = int, constant unit = zero,
function op1 = (+), prop Unit_def_r1 = Unit_def_r,
prop Unit_def_l1 = Unit_def_l, prop Assoc2 = Assoc, *)
axiom Inv_def_l : forall x:int. ((- x) + x) = zero
axiom Inv_def_r : forall x:int. (x + (- x)) = zero
(* clone algebra.Group with type t2 = int, function inv = (-_),
constant unit1 = zero, function op2 = (+), prop Inv_def_r1 = Inv_def_r,
prop Inv_def_l1 = Inv_def_l, prop Unit_def_r2 = Unit_def_r,
prop Unit_def_l2 = Unit_def_l, prop Assoc3 = Assoc, *)
axiom Comm : forall x:int, y:int. (x + y) = (y + x)
(* clone algebra.Comm with type t3 = int, function op3 = (+),
prop Comm1 = Comm, *)
(* meta AC function (+) *)
(* clone algebra.CommutativeGroup with type t4 = int, function inv1 = (-_),
constant unit2 = zero, function op4 = (+), prop Comm2 = Comm,
prop Inv_def_r2 = Inv_def_r, prop Inv_def_l2 = Inv_def_l,
prop Unit_def_r3 = Unit_def_r, prop Unit_def_l3 = Unit_def_l,
prop Assoc4 = Assoc, *)
axiom Assoc5 : forall x:int, y:int, z:int. ((x * y) * z) = (x * (y * z))
(* clone algebra.Assoc with type t = int, function op = ( * ),
prop Assoc1 = Assoc5, *)
axiom Mul_distr_l :
forall x:int, y:int, z:int. (x * (y + z)) = ((x * y) + (x * z))
axiom Mul_distr_r :
forall x:int, y:int, z:int. ((y + z) * x) = ((y * x) + (z * x))
(* clone algebra.Ring with type t5 = int, function ( *') = ( * ),
function (-'_) = (-_), function (+') = (+), constant zero1 = zero,
prop Mul_distr_r1 = Mul_distr_r, prop Mul_distr_l1 = Mul_distr_l,
prop Assoc6 = Assoc5, prop Comm3 = Comm, prop Inv_def_r3 = Inv_def_r,
prop Inv_def_l3 = Inv_def_l, prop Unit_def_r4 = Unit_def_r,
prop Unit_def_l4 = Unit_def_l, prop Assoc7 = Assoc, *)
axiom Comm4 : forall x:int, y:int. (x * y) = (y * x)
(* clone algebra.Comm with type t3 = int, function op3 = ( * ),
prop Comm1 = Comm4, *)
(* meta AC function ( * ) *)
(* clone algebra.CommutativeRing with type t6 = int,
function ( *'') = ( * ), function (-''_) = (-_), function (+'') = (+),
constant zero2 = zero, prop Comm5 = Comm4,
prop Mul_distr_r2 = Mul_distr_r, prop Mul_distr_l2 = Mul_distr_l,
prop Assoc8 = Assoc5, prop Comm6 = Comm, prop Inv_def_r4 = Inv_def_r,
prop Inv_def_l4 = Inv_def_l, prop Unit_def_r5 = Unit_def_r,
prop Unit_def_l5 = Unit_def_l, prop Assoc9 = Assoc, *)
axiom Unitary : forall x:int. (one * x) = x
axiom NonTrivialRing : not zero = one
(* clone algebra.UnitaryCommutativeRing with type t7 = int,
constant one1 = one, function ( *''') = ( * ), function (-'''_) = (-_),
function (+''') = (+), constant zero3 = zero,
prop NonTrivialRing1 = NonTrivialRing, prop Unitary1 = Unitary,
prop Comm7 = Comm4, prop Mul_distr_r3 = Mul_distr_r,
prop Mul_distr_l3 = Mul_distr_l, prop Assoc10 = Assoc5,
prop Comm8 = Comm, prop Inv_def_r5 = Inv_def_r,
prop Inv_def_l5 = Inv_def_l, prop Unit_def_r6 = Unit_def_r,
prop Unit_def_l6 = Unit_def_l, prop Assoc11 = Assoc, *)
(* clone relations.EndoRelation with type t8 = int, predicate rel = (<=),
*)
axiom Refl : forall x:int. x <= x
(* clone relations.Reflexive with type t9 = int, predicate rel1 = (<=),
prop Refl1 = Refl, *)
(* clone relations.EndoRelation with type t8 = int, predicate rel = (<=),
*)
axiom Trans : forall x:int, y:int, z:int. x <= y -> y <= z -> x <= z
(* clone relations.Transitive with type t10 = int, predicate rel2 = (<=),
prop Trans1 = Trans, *)
(* clone relations.PreOrder with type t11 = int, predicate rel3 = (<=),
prop Trans2 = Trans, prop Refl2 = Refl, *)
(* clone relations.EndoRelation with type t8 = int, predicate rel = (<=),
*)
axiom Antisymm : forall x:int, y:int. x <= y -> y <= x -> x = y
(* clone relations.Antisymmetric with type t12 = int,
predicate rel4 = (<=), prop Antisymm1 = Antisymm, *)
(* clone relations.PartialOrder with type t13 = int, predicate rel5 = (<=),
prop Antisymm2 = Antisymm, prop Trans3 = Trans, prop Refl3 = Refl, *)
(* clone relations.EndoRelation with type t8 = int, predicate rel = (<=),
*)
axiom Total : forall x:int, y:int. x <= y \/ y <= x
(* clone relations.Total with type t14 = int, predicate rel6 = (<=),
prop Total1 = Total, *)
(* clone relations.TotalOrder with type t15 = int, predicate rel7 = (<=),
prop Total2 = Total, prop Antisymm3 = Antisymm, prop Trans4 = Trans,
prop Refl4 = Refl, *)
axiom ZeroLessOne : zero <= one
axiom CompatOrderAdd :
forall x:int, y:int, z:int. x <= y -> (x + z) <= (y + z)
axiom CompatOrderMult :
forall x:int, y:int, z:int. x <= y -> zero <= z -> (x * z) <= (y * z)
(* meta remove_unused:dependency prop CompatOrderMult, function ( * ) *)
(* clone algebra.OrderedUnitaryCommutativeRing with type t16 = int,
predicate (<=') = (<=), constant one2 = one, function ( *'''') = ( * ),
function (-''''_) = (-_), function (+'''') = (+), constant zero4 = zero,
prop CompatOrderMult1 = CompatOrderMult,
prop CompatOrderAdd1 = CompatOrderAdd, prop ZeroLessOne1 = ZeroLessOne,
prop Total3 = Total, prop Antisymm4 = Antisymm, prop Trans5 = Trans,
prop Refl5 = Refl, prop NonTrivialRing2 = NonTrivialRing,
prop Unitary2 = Unitary, prop Comm9 = Comm4,
prop Mul_distr_r4 = Mul_distr_r, prop Mul_distr_l4 = Mul_distr_l,
prop Assoc12 = Assoc5, prop Comm10 = Comm, prop Inv_def_r6 = Inv_def_r,
prop Inv_def_l6 = Inv_def_l, prop Unit_def_r7 = Unit_def_r,
prop Unit_def_l7 = Unit_def_l, prop Assoc13 = Assoc, *)
(* meta remove_unused:keep function (+) *)
(* meta remove_unused:keep function (-) *)
(* meta remove_unused:keep function (-_) *)
(* meta remove_unused:keep predicate (<) *)
(* meta remove_unused:keep predicate (<=) *)
(* meta remove_unused:keep predicate (>) *)
(* meta remove_unused:keep predicate (>=) *)
(* use int.Int *)
goal goal4 : forall x:int. (x * x) >= 0
end
== Task 2 ==
theory Task
type int
type real
type string
predicate (=) 'a 'a
(* use why3.BuiltIn.BuiltIn *)
predicate A
predicate B
type bool =
| True
| False
(* use why3.Bool.Bool *)
type tuple0 =
| Tuple0
(* use why3.Tuple0.Tuple01 *)
type unit = unit
(* use why3.Unit.Unit *)
constant zero : int = 0
constant one : int = 1
function (-_) int : int
function (+) int int : int
function ( * ) int int : int
predicate (<) int int
function (-) (x:int) (y:int) : int = x + (- y)
predicate (>) (x:int) (y:int) = y < x
predicate (<=) (x:int) (y:int) = x < y \/ x = y
predicate (>=) (x:int) (y:int) = y <= x
axiom Assoc : forall x:int, y:int, z:int. ((x + y) + z) = (x + (y + z))
(* clone algebra.Assoc with type t = int, function op = (+),
prop Assoc1 = Assoc, *)
axiom Unit_def_l : forall x:int. (zero + x) = x
axiom Unit_def_r : forall x:int. (x + zero) = x
(* clone algebra.Monoid with type t1 = int, constant unit = zero,
function op1 = (+), prop Unit_def_r1 = Unit_def_r,
prop Unit_def_l1 = Unit_def_l, prop Assoc2 = Assoc, *)
axiom Inv_def_l : forall x:int. ((- x) + x) = zero
axiom Inv_def_r : forall x:int. (x + (- x)) = zero
(* clone algebra.Group with type t2 = int, function inv = (-_),
constant unit1 = zero, function op2 = (+), prop Inv_def_r1 = Inv_def_r,
prop Inv_def_l1 = Inv_def_l, prop Unit_def_r2 = Unit_def_r,
prop Unit_def_l2 = Unit_def_l, prop Assoc3 = Assoc, *)
axiom Comm : forall x:int, y:int. (x + y) = (y + x)
(* clone algebra.Comm with type t3 = int, function op3 = (+),
prop Comm1 = Comm, *)
(* meta AC function (+) *)
(* clone algebra.CommutativeGroup with type t4 = int, function inv1 = (-_),
constant unit2 = zero, function op4 = (+), prop Comm2 = Comm,
prop Inv_def_r2 = Inv_def_r, prop Inv_def_l2 = Inv_def_l,
prop Unit_def_r3 = Unit_def_r, prop Unit_def_l3 = Unit_def_l,
prop Assoc4 = Assoc, *)
axiom Assoc5 : forall x:int, y:int, z:int. ((x * y) * z) = (x * (y * z))
(* clone algebra.Assoc with type t = int, function op = ( * ),
prop Assoc1 = Assoc5, *)
axiom Mul_distr_l :
forall x:int, y:int, z:int. (x * (y + z)) = ((x * y) + (x * z))
axiom Mul_distr_r :
forall x:int, y:int, z:int. ((y + z) * x) = ((y * x) + (z * x))
(* clone algebra.Ring with type t5 = int, function ( *') = ( * ),
function (-'_) = (-_), function (+') = (+), constant zero1 = zero,
prop Mul_distr_r1 = Mul_distr_r, prop Mul_distr_l1 = Mul_distr_l,
prop Assoc6 = Assoc5, prop Comm3 = Comm, prop Inv_def_r3 = Inv_def_r,
prop Inv_def_l3 = Inv_def_l, prop Unit_def_r4 = Unit_def_r,
prop Unit_def_l4 = Unit_def_l, prop Assoc7 = Assoc, *)
axiom Comm4 : forall x:int, y:int. (x * y) = (y * x)
(* clone algebra.Comm with type t3 = int, function op3 = ( * ),
prop Comm1 = Comm4, *)
(* meta AC function ( * ) *)
(* clone algebra.CommutativeRing with type t6 = int,
function ( *'') = ( * ), function (-''_) = (-_), function (+'') = (+),
constant zero2 = zero, prop Comm5 = Comm4,
prop Mul_distr_r2 = Mul_distr_r, prop Mul_distr_l2 = Mul_distr_l,
prop Assoc8 = Assoc5, prop Comm6 = Comm, prop Inv_def_r4 = Inv_def_r,
prop Inv_def_l4 = Inv_def_l, prop Unit_def_r5 = Unit_def_r,
prop Unit_def_l5 = Unit_def_l, prop Assoc9 = Assoc, *)
axiom Unitary : forall x:int. (one * x) = x
axiom NonTrivialRing : not zero = one
(* clone algebra.UnitaryCommutativeRing with type t7 = int,
constant one1 = one, function ( *''') = ( * ), function (-'''_) = (-_),
function (+''') = (+), constant zero3 = zero,
prop NonTrivialRing1 = NonTrivialRing, prop Unitary1 = Unitary,
prop Comm7 = Comm4, prop Mul_distr_r3 = Mul_distr_r,
prop Mul_distr_l3 = Mul_distr_l, prop Assoc10 = Assoc5,
prop Comm8 = Comm, prop Inv_def_r5 = Inv_def_r,
prop Inv_def_l5 = Inv_def_l, prop Unit_def_r6 = Unit_def_r,
prop Unit_def_l6 = Unit_def_l, prop Assoc11 = Assoc, *)
(* clone relations.EndoRelation with type t8 = int, predicate rel = (<=),
*)
axiom Refl : forall x:int. x <= x
(* clone relations.Reflexive with type t9 = int, predicate rel1 = (<=),
prop Refl1 = Refl, *)
(* clone relations.EndoRelation with type t8 = int, predicate rel = (<=),
*)
axiom Trans : forall x:int, y:int, z:int. x <= y -> y <= z -> x <= z
(* clone relations.Transitive with type t10 = int, predicate rel2 = (<=),
prop Trans1 = Trans, *)
(* clone relations.PreOrder with type t11 = int, predicate rel3 = (<=),
prop Trans2 = Trans, prop Refl2 = Refl, *)
(* clone relations.EndoRelation with type t8 = int, predicate rel = (<=),
*)
axiom Antisymm : forall x:int, y:int. x <= y -> y <= x -> x = y
(* clone relations.Antisymmetric with type t12 = int,
predicate rel4 = (<=), prop Antisymm1 = Antisymm, *)
(* clone relations.PartialOrder with type t13 = int, predicate rel5 = (<=),
prop Antisymm2 = Antisymm, prop Trans3 = Trans, prop Refl3 = Refl, *)
(* clone relations.EndoRelation with type t8 = int, predicate rel = (<=),
*)
axiom Total : forall x:int, y:int. x <= y \/ y <= x
(* clone relations.Total with type t14 = int, predicate rel6 = (<=),
prop Total1 = Total, *)
(* clone relations.TotalOrder with type t15 = int, predicate rel7 = (<=),
prop Total2 = Total, prop Antisymm3 = Antisymm, prop Trans4 = Trans,
prop Refl4 = Refl, *)
axiom ZeroLessOne : zero <= one
axiom CompatOrderAdd :
forall x:int, y:int, z:int. x <= y -> (x + z) <= (y + z)
axiom CompatOrderMult :
forall x:int, y:int, z:int. x <= y -> zero <= z -> (x * z) <= (y * z)
(* meta remove_unused:dependency prop CompatOrderMult, function ( * ) *)
(* clone algebra.OrderedUnitaryCommutativeRing with type t16 = int,
predicate (<=') = (<=), constant one2 = one, function ( *'''') = ( * ),
function (-''''_) = (-_), function (+'''') = (+), constant zero4 = zero,
prop CompatOrderMult1 = CompatOrderMult,
prop CompatOrderAdd1 = CompatOrderAdd, prop ZeroLessOne1 = ZeroLessOne,
prop Total3 = Total, prop Antisymm4 = Antisymm, prop Trans5 = Trans,
prop Refl5 = Refl, prop NonTrivialRing2 = NonTrivialRing,
prop Unitary2 = Unitary, prop Comm9 = Comm4,
prop Mul_distr_r4 = Mul_distr_r, prop Mul_distr_l4 = Mul_distr_l,
prop Assoc12 = Assoc5, prop Comm10 = Comm, prop Inv_def_r6 = Inv_def_r,
prop Inv_def_l6 = Inv_def_l, prop Unit_def_r7 = Unit_def_r,
prop Unit_def_l7 = Unit_def_l, prop Assoc13 = Assoc, *)
(* meta remove_unused:keep function (+) *)
(* meta remove_unused:keep function (-) *)
(* meta remove_unused:keep function (-_) *)
(* meta remove_unused:keep predicate (<) *)
(* meta remove_unused:keep predicate (<=) *)
(* meta remove_unused:keep predicate (>) *)
(* meta remove_unused:keep predicate (>=) *)
(* use int.Int *)
goal goal3 : (2 + 2) = 4
end
== Task 3 ==
theory Task
type int
type real
type string
predicate (=) 'a 'a
(* use why3.BuiltIn.BuiltIn *)
predicate A
predicate B
goal goal2 : A /\ B -> A
end
== Task 4 ==
theory Task
type int
type real
type string
predicate (=) 'a 'a
(* use why3.BuiltIn.BuiltIn *)
goal goal1 : true \/ false
end
|