File: test-api-mlw_expr.stdout

package info (click to toggle)
why3 1.8.2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 45,028 kB
  • sloc: xml: 185,443; ml: 111,224; ansic: 3,998; sh: 2,578; makefile: 2,568; java: 865; python: 720; javascript: 290; lisp: 205; pascal: 173
file content (229 lines) | stat: -rw-r--r-- 7,360 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
Tasks are:
== Task 1 ==

theory Task
  
  type int
  
  type real
  
  type string
  
  predicate (=) 'a 'a
  
  (* use why3.BuiltIn.BuiltIn *)
  
  type bool =
    | True
    | False
  
  (* use why3.Bool.Bool *)
  
  type tuple0 =
    | Tuple0
  
  (* use why3.Tuple0.Tuple01 *)
  
  type unit = unit
  
  (* use why3.Unit.Unit *)
  
  constant zero : int = 0
  
  constant one : int = 1
  
  function (-_) int : int
  
  function (+) int int : int
  
  function ( * ) int int : int
  
  predicate (<) int int
  
  function (-) (x:int) (y:int) : int = x + (- y)
  
  predicate (>) (x:int) (y:int) = y < x
  
  predicate (<=) (x:int) (y:int) = x < y \/ x = y
  
  predicate (>=) (x:int) (y:int) = y <= x
  
  axiom Assoc : forall x:int, y:int, z:int. ((x + y) + z) = (x + (y + z))
  
  (* clone algebra.Assoc with type t = int, function op = (+),
    prop Assoc1 = Assoc,  *)
  
  axiom Unit_def_l : forall x:int. (zero + x) = x
  
  axiom Unit_def_r : forall x:int. (x + zero) = x
  
  (* clone algebra.Monoid with type t1 = int, constant unit = zero,
    function op1 = (+), prop Unit_def_r1 = Unit_def_r,
    prop Unit_def_l1 = Unit_def_l, prop Assoc2 = Assoc,  *)
  
  axiom Inv_def_l : forall x:int. ((- x) + x) = zero
  
  axiom Inv_def_r : forall x:int. (x + (- x)) = zero
  
  (* clone algebra.Group with type t2 = int, function inv = (-_),
    constant unit1 = zero, function op2 = (+), prop Inv_def_r1 = Inv_def_r,
    prop Inv_def_l1 = Inv_def_l, prop Unit_def_r2 = Unit_def_r,
    prop Unit_def_l2 = Unit_def_l, prop Assoc3 = Assoc,  *)
  
  axiom Comm : forall x:int, y:int. (x + y) = (y + x)
  
  (* clone algebra.Comm with type t3 = int, function op3 = (+),
    prop Comm1 = Comm,  *)
  
  (* meta AC function (+) *)
  
  (* clone algebra.CommutativeGroup with type t4 = int, function inv1 = (-_),
    constant unit2 = zero, function op4 = (+), prop Comm2 = Comm,
    prop Inv_def_r2 = Inv_def_r, prop Inv_def_l2 = Inv_def_l,
    prop Unit_def_r3 = Unit_def_r, prop Unit_def_l3 = Unit_def_l,
    prop Assoc4 = Assoc,  *)
  
  axiom Assoc5 : forall x:int, y:int, z:int. ((x * y) * z) = (x * (y * z))
  
  (* clone algebra.Assoc with type t = int, function op = ( * ),
    prop Assoc1 = Assoc5,  *)
  
  axiom Mul_distr_l :
    forall x:int, y:int, z:int. (x * (y + z)) = ((x * y) + (x * z))
  
  axiom Mul_distr_r :
    forall x:int, y:int, z:int. ((y + z) * x) = ((y * x) + (z * x))
  
  (* clone algebra.Ring with type t5 = int, function ( *') = ( * ),
    function (-'_) = (-_), function (+') = (+), constant zero1 = zero,
    prop Mul_distr_r1 = Mul_distr_r, prop Mul_distr_l1 = Mul_distr_l,
    prop Assoc6 = Assoc5, prop Comm3 = Comm, prop Inv_def_r3 = Inv_def_r,
    prop Inv_def_l3 = Inv_def_l, prop Unit_def_r4 = Unit_def_r,
    prop Unit_def_l4 = Unit_def_l, prop Assoc7 = Assoc,  *)
  
  axiom Comm4 : forall x:int, y:int. (x * y) = (y * x)
  
  (* clone algebra.Comm with type t3 = int, function op3 = ( * ),
    prop Comm1 = Comm4,  *)
  
  (* meta AC function ( * ) *)
  
  (* clone algebra.CommutativeRing with type t6 = int,
    function ( *'') = ( * ), function (-''_) = (-_), function (+'') = (+),
    constant zero2 = zero, prop Comm5 = Comm4,
    prop Mul_distr_r2 = Mul_distr_r, prop Mul_distr_l2 = Mul_distr_l,
    prop Assoc8 = Assoc5, prop Comm6 = Comm, prop Inv_def_r4 = Inv_def_r,
    prop Inv_def_l4 = Inv_def_l, prop Unit_def_r5 = Unit_def_r,
    prop Unit_def_l5 = Unit_def_l, prop Assoc9 = Assoc,  *)
  
  axiom Unitary : forall x:int. (one * x) = x
  
  axiom NonTrivialRing : not zero = one
  
  (* clone algebra.UnitaryCommutativeRing with type t7 = int,
    constant one1 = one, function ( *''') = ( * ), function (-'''_) = (-_),
    function (+''') = (+), constant zero3 = zero,
    prop NonTrivialRing1 = NonTrivialRing, prop Unitary1 = Unitary,
    prop Comm7 = Comm4, prop Mul_distr_r3 = Mul_distr_r,
    prop Mul_distr_l3 = Mul_distr_l, prop Assoc10 = Assoc5,
    prop Comm8 = Comm, prop Inv_def_r5 = Inv_def_r,
    prop Inv_def_l5 = Inv_def_l, prop Unit_def_r6 = Unit_def_r,
    prop Unit_def_l6 = Unit_def_l, prop Assoc11 = Assoc,  *)
  
  (* clone relations.EndoRelation with type t8 = int, predicate rel = (<=),
     *)
  
  axiom Refl : forall x:int. x <= x
  
  (* clone relations.Reflexive with type t9 = int, predicate rel1 = (<=),
    prop Refl1 = Refl,  *)
  
  (* clone relations.EndoRelation with type t8 = int, predicate rel = (<=),
     *)
  
  axiom Trans : forall x:int, y:int, z:int. x <= y -> y <= z -> x <= z
  
  (* clone relations.Transitive with type t10 = int, predicate rel2 = (<=),
    prop Trans1 = Trans,  *)
  
  (* clone relations.PreOrder with type t11 = int, predicate rel3 = (<=),
    prop Trans2 = Trans, prop Refl2 = Refl,  *)
  
  (* clone relations.EndoRelation with type t8 = int, predicate rel = (<=),
     *)
  
  axiom Antisymm : forall x:int, y:int. x <= y -> y <= x -> x = y
  
  (* clone relations.Antisymmetric with type t12 = int,
    predicate rel4 = (<=), prop Antisymm1 = Antisymm,  *)
  
  (* clone relations.PartialOrder with type t13 = int, predicate rel5 = (<=),
    prop Antisymm2 = Antisymm, prop Trans3 = Trans, prop Refl3 = Refl,  *)
  
  (* clone relations.EndoRelation with type t8 = int, predicate rel = (<=),
     *)
  
  axiom Total : forall x:int, y:int. x <= y \/ y <= x
  
  (* clone relations.Total with type t14 = int, predicate rel6 = (<=),
    prop Total1 = Total,  *)
  
  (* clone relations.TotalOrder with type t15 = int, predicate rel7 = (<=),
    prop Total2 = Total, prop Antisymm3 = Antisymm, prop Trans4 = Trans,
    prop Refl4 = Refl,  *)
  
  axiom ZeroLessOne : zero <= one
  
  axiom CompatOrderAdd :
    forall x:int, y:int, z:int. x <= y -> (x + z) <= (y + z)
  
  axiom CompatOrderMult :
    forall x:int, y:int, z:int. x <= y -> zero <= z -> (x * z) <= (y * z)
  
  (* meta remove_unused:dependency prop CompatOrderMult, function ( * ) *)
  
  (* clone algebra.OrderedUnitaryCommutativeRing with type t16 = int,
    predicate (<=') = (<=), constant one2 = one, function ( *'''') = ( * ),
    function (-''''_) = (-_), function (+'''') = (+), constant zero4 = zero,
    prop CompatOrderMult1 = CompatOrderMult,
    prop CompatOrderAdd1 = CompatOrderAdd, prop ZeroLessOne1 = ZeroLessOne,
    prop Total3 = Total, prop Antisymm4 = Antisymm, prop Trans5 = Trans,
    prop Refl5 = Refl, prop NonTrivialRing2 = NonTrivialRing,
    prop Unitary2 = Unitary, prop Comm9 = Comm4,
    prop Mul_distr_r4 = Mul_distr_r, prop Mul_distr_l4 = Mul_distr_l,
    prop Assoc12 = Assoc5, prop Comm10 = Comm, prop Inv_def_r6 = Inv_def_r,
    prop Inv_def_l6 = Inv_def_l, prop Unit_def_r7 = Unit_def_r,
    prop Unit_def_l7 = Unit_def_l, prop Assoc13 = Assoc,  *)
  
  (* meta remove_unused:keep function (+) *)
  
  (* meta remove_unused:keep function (-) *)
  
  (* meta remove_unused:keep function (-_) *)
  
  (* meta remove_unused:keep predicate (<) *)
  
  (* meta remove_unused:keep predicate (<=) *)
  
  (* meta remove_unused:keep predicate (>) *)
  
  (* meta remove_unused:keep predicate (>=) *)
  
  (* use int.Int *)
  
  type ref 'a =
    | Ref'mk (contents:'a)
  
  (* use why3.Ref.Ref *)
  
  function (!) (r:ref 'a) : 'a = r.contents
  
  (* use ref.Ref1 *)
  
  goal f'vc :
    let ref'result'unused = Ref'mk 42 in
    let (!)'result'unused = 42 in 42 >= 0
  
end

On task 1, alt-ergo answers Valid (<hidden>s, <hidden> steps)