1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
|
(********************************************************************)
(* *)
(* The Why3 Verification Platform / The Why3 Development Team *)
(* Copyright 2010-2025 -- Inria - CNRS - Paris-Saclay University *)
(* *)
(* This software is distributed under the terms of the GNU Lesser *)
(* General Public License version 2.1, with the special exception *)
(* on linking described in file LICENSE. *)
(********************************************************************)
Require Export ZArith.
Require Export Rbase.
Require Import String.
Require Import ClassicalEpsilon.
Class WhyType T := {
why_inhabitant : T ;
why_decidable_eq : forall x y : T, { x = y } + { x <> y }
}.
Notation int := Z.
Notation IZR := IZR (only parsing).
Global Instance int_WhyType : WhyType int.
Proof.
split.
exact Z0.
exact Z.eq_dec.
Qed.
Notation real := R.
Global Instance real_WhyType : WhyType real.
Proof.
split.
exact R0.
intros x y.
destruct (total_order_T x y) as [[H|H]|H] ;
try (left ; exact H) ; right.
now apply Rlt_not_eq.
now apply Rgt_not_eq.
Qed.
Global Instance string_WhyType : WhyType string.
Proof.
split.
exact EmptyString.
intros x y.
apply string_dec.
Qed.
Global Instance tuple_WhyType : forall T {T' : WhyType T} U {U' : WhyType U}, WhyType (T * U).
Proof.
intros T WT U WU.
split.
split ; apply why_inhabitant.
intros (x1,x2) (y1,y2).
destruct (why_decidable_eq x1 y1) as [H1|H1].
destruct (why_decidable_eq x2 y2) as [H2|H2].
left.
now apply f_equal2.
right.
now injection.
right.
now injection.
Qed.
Global Instance unit_WhyType : WhyType unit.
Proof.
split.
exact tt.
intros [] [].
now left.
Qed.
Global Instance bool_WhyType : WhyType bool.
Proof.
split.
exact false.
exact Bool.bool_dec.
Qed.
Global Instance func_WhyType : forall (a:Type) {a_WT:WhyType a} (b:Type) {b_WT:WhyType b}, WhyType (a -> b).
Proof.
intros.
repeat split.
exact (fun _ => why_inhabitant).
intros x y.
apply excluded_middle_informative.
Qed.
|