File: Set.v

package info (click to toggle)
why3 1.8.2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 45,028 kB
  • sloc: xml: 185,443; ml: 111,224; ansic: 3,998; sh: 2,578; makefile: 2,568; java: 865; python: 720; javascript: 290; lisp: 205; pascal: 173
file content (453 lines) | stat: -rw-r--r-- 11,993 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
(********************************************************************)
(*                                                                  *)
(*  The Why3 Verification Platform   /   The Why3 Development Team  *)
(*  Copyright 2010-2025 --  Inria - CNRS - Paris-Saclay University  *)
(*                                                                  *)
(*  This software is distributed under the terms of the GNU Lesser  *)
(*  General Public License version 2.1, with the special exception  *)
(*  on linking described in file LICENSE.                           *)
(********************************************************************)

(* This file is generated by Why3's Coq-realize driver *)
(* Beware! Only edit allowed sections below    *)
Require Import BuiltIn.
Require BuiltIn.
Require HighOrd.
Require map.Map.
Require map.Const.
Require map.MapExt.

Require Import ClassicalEpsilon.

Lemma predicate_extensionality:
  forall A (P Q : A -> bool),
    (forall x, P x = Q x) -> P = Q.
Admitted.

(* Why3 assumption *)
Definition set (a:Type) := a -> Init.Datatypes.bool.

Global Instance set_WhyType : forall (a:Type) {a_WT:WhyType a}, WhyType (set a).
Proof.
intros.
split.
exact (fun _ => false).
intros x y.
apply excluded_middle_informative.
Qed.

(* Why3 assumption *)
Definition mem {a:Type} {a_WT:WhyType a} (x:a) (s:a -> Init.Datatypes.bool) :
    Prop :=
  ((s x) = Init.Datatypes.true).

Hint Unfold mem.

Notation "x == y" := (MapExt.infix_eqeq x y) (at level 70, no associativity).

(* Why3 assumption *)
Definition subset {a:Type} {a_WT:WhyType a} (s1:a -> Init.Datatypes.bool)
    (s2:a -> Init.Datatypes.bool) : Prop :=
  forall (x:a), mem x s1 -> mem x s2.

(* Why3 goal *)
Lemma subset_refl {a:Type} {a_WT:WhyType a} :
  forall (s:a -> Init.Datatypes.bool), subset s s.
Proof.
now intros s x.
Qed.

(* Why3 goal *)
Lemma subset_trans {a:Type} {a_WT:WhyType a} :
  forall (s1:a -> Init.Datatypes.bool) (s2:a -> Init.Datatypes.bool)
    (s3:a -> Init.Datatypes.bool),
  subset s1 s2 -> subset s2 s3 -> subset s1 s3.
Proof.
intros s1 s2 s3 h1 h2 x H.
now apply h2, h1.
Qed.

(* Why3 assumption *)
Definition is_empty {a:Type} {a_WT:WhyType a} (s:a -> Init.Datatypes.bool) :
    Prop :=
  forall (x:a), ~ mem x s.

(* Why3 goal *)
Lemma is_empty_empty {a:Type} {a_WT:WhyType a} :
  is_empty (map.Const.const Init.Datatypes.false : a -> Init.Datatypes.bool).
Proof.
now intros x.
Qed.

(* Why3 goal *)
Lemma empty_is_empty {a:Type} {a_WT:WhyType a} :
  forall (s:a -> Init.Datatypes.bool), is_empty s ->
  (s = (map.Const.const Init.Datatypes.false : a -> Init.Datatypes.bool)).
Proof.
intros s h1.
apply predicate_extensionality.
unfold is_empty in h1; unfold Const.const.
unfold mem in h1.
intros x. generalize (h1 x).
destruct (s x); intuition.
Qed.

(* Why3 goal *)
Lemma mem_singleton {a:Type} {a_WT:WhyType a} :
  forall (x:a) (y:a),
  mem y
  (map.Map.set
   (map.Const.const Init.Datatypes.false : a -> Init.Datatypes.bool) x
   Init.Datatypes.true) ->
  (y = x).
Proof.
intros x y h1.
unfold mem, Map.set, Const.const in h1.
destruct (why_decidable_eq x y) as [->|H] ; intuition.
discriminate h1.
Qed.

(* Why3 goal *)
Lemma add_remove {a:Type} {a_WT:WhyType a} :
  forall (x:a) (s:a -> Init.Datatypes.bool), mem x s ->
  ((map.Map.set (map.Map.set s x Init.Datatypes.false) x Init.Datatypes.true)
   = s).
Proof.
intros x s h1.
apply MapExt.extensionality; intro y.
unfold mem, Map.set. unfold mem in h1.
destruct (why_decidable_eq x y) as [->|H] ; intuition.
Qed.

(* Why3 goal *)
Lemma remove_add {a:Type} {a_WT:WhyType a} :
  forall (x:a) (s:a -> Init.Datatypes.bool),
  ((map.Map.set (map.Map.set s x Init.Datatypes.true) x Init.Datatypes.false)
   = (map.Map.set s x Init.Datatypes.false)).
Proof.
intros x s.
apply MapExt.extensionality; intro y.
unfold mem, Map.set.
destruct (why_decidable_eq x y) as [->|H] ; intuition.
Qed.

(* Why3 goal *)
Lemma subset_remove {a:Type} {a_WT:WhyType a} :
  forall (x:a) (s:a -> Init.Datatypes.bool),
  subset (map.Map.set s x Init.Datatypes.false) s.
Proof.
intros x s y.
unfold mem, Map.set.
destruct (why_decidable_eq x y) as [->|H] ; intuition.
Qed.

(* Why3 goal *)
Definition union {a:Type} {a_WT:WhyType a} :
  (a -> Init.Datatypes.bool) -> (a -> Init.Datatypes.bool) ->
  a -> Init.Datatypes.bool.
Proof.
intros s1 s2.
exact (fun x => orb (s1 x) (s2 x)).
Defined.

(* Why3 goal *)
Lemma union'def {a:Type} {a_WT:WhyType a} :
  forall (s1:a -> Init.Datatypes.bool) (s2:a -> Init.Datatypes.bool) (x:a),
  ((union s1 s2 x) = Init.Datatypes.true) <-> mem x s1 \/ mem x s2.
Proof.
intros s1 s2 x.
apply Bool.orb_true_iff.
Qed.

(* Why3 goal *)
Lemma subset_union_1 {a:Type} {a_WT:WhyType a} :
  forall (s1:a -> Init.Datatypes.bool) (s2:a -> Init.Datatypes.bool),
  subset s1 (union s1 s2).
Proof.
intros s1 s2.
unfold subset, union.
unfold mem.
intros x hx.
apply Bool.orb_true_iff. intuition.
Qed.

(* Why3 goal *)
Lemma subset_union_2 {a:Type} {a_WT:WhyType a} :
  forall (s1:a -> Init.Datatypes.bool) (s2:a -> Init.Datatypes.bool),
  subset s2 (union s1 s2).
Proof.
intros s1 s2.
unfold subset, union.
unfold mem.
intros x hx.
apply Bool.orb_true_iff. intuition.
Qed.

(* Why3 goal *)
Definition inter {a:Type} {a_WT:WhyType a} :
  (a -> Init.Datatypes.bool) -> (a -> Init.Datatypes.bool) ->
  a -> Init.Datatypes.bool.
Proof.
intros s1 s2.
exact (fun x => andb (s1 x) (s2 x)).
Defined.

(* Why3 goal *)
Lemma inter'def {a:Type} {a_WT:WhyType a} :
  forall (s1:a -> Init.Datatypes.bool) (s2:a -> Init.Datatypes.bool) (x:a),
  ((inter s1 s2 x) = Init.Datatypes.true) <-> mem x s1 /\ mem x s2.
Proof.
intros s1 s2 x.
apply Bool.andb_true_iff.
Qed.

(* Why3 goal *)
Lemma subset_inter_1 {a:Type} {a_WT:WhyType a} :
  forall (s1:a -> Init.Datatypes.bool) (s2:a -> Init.Datatypes.bool),
  subset (inter s1 s2) s1.
Proof.
intros s1 s2.
unfold subset, inter.
unfold mem.
intros x hx.
apply Bool.andb_true_iff in hx. intuition.
Qed.

(* Why3 goal *)
Lemma subset_inter_2 {a:Type} {a_WT:WhyType a} :
  forall (s1:a -> Init.Datatypes.bool) (s2:a -> Init.Datatypes.bool),
  subset (inter s1 s2) s2.
Proof.
intros s1 s2.
unfold subset, inter.
unfold mem.
intros x hx.
apply Bool.andb_true_iff in hx. intuition.
Qed.

(* Why3 goal *)
Definition diff {a:Type} {a_WT:WhyType a} :
  (a -> Init.Datatypes.bool) -> (a -> Init.Datatypes.bool) ->
  a -> Init.Datatypes.bool.
Proof.
intros s1 s2.
exact (fun x => andb (s1 x) (negb (s2 x))).
Defined.

(* Why3 goal *)
Lemma diff'def {a:Type} {a_WT:WhyType a} :
  forall (s1:a -> Init.Datatypes.bool) (s2:a -> Init.Datatypes.bool) (x:a),
  ((diff s1 s2 x) = Init.Datatypes.true) <-> mem x s1 /\ ~ mem x s2.
Proof.
intros s1 s2 x.
unfold mem, diff.
rewrite Bool.not_true_iff_false.
rewrite <- Bool.negb_true_iff.
apply Bool.andb_true_iff.
Qed.

(* Why3 goal *)
Lemma subset_diff {a:Type} {a_WT:WhyType a} :
  forall (s1:a -> Init.Datatypes.bool) (s2:a -> Init.Datatypes.bool),
  subset (diff s1 s2) s1.
Proof.
intros s1 s2 x.
unfold mem.
rewrite diff'def. intuition.
Qed.

(* Why3 goal *)
Definition complement {a:Type} {a_WT:WhyType a} :
  (a -> Init.Datatypes.bool) -> a -> Init.Datatypes.bool.
Proof.
intros s.
exact (fun x => negb (s x)).
Defined.

(* Why3 goal *)
Lemma complement'def {a:Type} {a_WT:WhyType a} :
  forall (s:a -> Init.Datatypes.bool) (x:a),
  ((complement s x) = Init.Datatypes.true) <-> ~ mem x s.
Proof.
intros s x.
unfold mem, complement.
rewrite Bool.not_true_iff_false.
apply Bool.negb_true_iff.
Qed.

(* Why3 goal *)
Definition pick {a:Type} {a_WT:WhyType a} : (a -> Init.Datatypes.bool) -> a.
Proof.
intros s.
assert (i: inhabited a) by (apply inhabits, why_inhabitant).
exact (epsilon i (fun x => mem x s)).
Defined.

(* Why3 goal *)
Lemma pick_def {a:Type} {a_WT:WhyType a} :
  forall (s:a -> Init.Datatypes.bool), ~ is_empty s -> mem (pick s) s.
Proof.
intros s h1.
unfold pick.
apply epsilon_spec.
now apply not_all_not_ex.
Qed.

(* Why3 assumption *)
Definition disjoint {a:Type} {a_WT:WhyType a} (s1:a -> Init.Datatypes.bool)
    (s2:a -> Init.Datatypes.bool) : Prop :=
  forall (x:a), ~ mem x s1 \/ ~ mem x s2.

(* Why3 goal *)
Lemma disjoint_inter_empty {a:Type} {a_WT:WhyType a} :
  forall (s1:a -> Init.Datatypes.bool) (s2:a -> Init.Datatypes.bool),
  disjoint s1 s2 <-> is_empty (inter s1 s2).
Proof.
intros s1 s2.
unfold disjoint, is_empty, inter.
unfold mem.
intuition.
destruct (H x); intuition.
apply H1.
rewrite Bool.andb_true_iff in H0. intuition.
apply H1.
rewrite Bool.andb_true_iff in H0. intuition.
generalize (H x).
rewrite Bool.andb_true_iff.
destruct (s1 x); destruct (s2 x); intuition.
Qed.

(* Why3 goal *)
Lemma disjoint_diff_eq {a:Type} {a_WT:WhyType a} :
  forall (s1:a -> Init.Datatypes.bool) (s2:a -> Init.Datatypes.bool),
  disjoint s1 s2 <-> ((diff s1 s2) = s1).
Proof.
intros s1 s2.
unfold disjoint, diff.
unfold mem.
intuition.
- apply (MapExt.extensionality _ s1). unfold MapExt.infix_eqeq.
  intro x.
  generalize (H x); clear H; intro H.
  destruct (s1 x); destruct (s2 x); intuition.
- rewrite <- H.
  rewrite Bool.andb_true_iff.
  destruct (s2 x); intuition.
Qed.

(* Why3 goal *)
Lemma disjoint_diff_s2 {a:Type} {a_WT:WhyType a} :
  forall (s1:a -> Init.Datatypes.bool) (s2:a -> Init.Datatypes.bool),
  disjoint (diff s1 s2) s2.
Proof.
intros s1 s2.
unfold disjoint, diff.
unfold mem.
intros x.
rewrite Bool.andb_true_iff.
destruct (s2 x); intuition.
Qed.

(* Why3 goal *)
Definition product {a:Type} {a_WT:WhyType a} {b:Type} {b_WT:WhyType b} :
  (a -> Init.Datatypes.bool) -> (b -> Init.Datatypes.bool) ->
  (a* b)%type -> Init.Datatypes.bool.
Proof.
  intros sx sy xy.
  destruct xy as [x y].
  exact (andb (sx x) (sy y)).
Defined.

(* Why3 goal *)
Lemma product_def {a:Type} {a_WT:WhyType a} {b:Type} {b_WT:WhyType b} :
  forall (s1:a -> Init.Datatypes.bool) (s2:b -> Init.Datatypes.bool) 
    (x:a) (y:b),
  mem (x, y) (product s1 s2) <-> mem x s1 /\ mem y s2.
Proof.
intros s1 s2 x y.
apply Bool.andb_true_iff.
Qed.

(* Why3 goal *)
Definition filter {a:Type} {a_WT:WhyType a} :
  (a -> Init.Datatypes.bool) -> (a -> Init.Datatypes.bool) ->
  a -> Init.Datatypes.bool.
Proof.
  intros s1 s2 e.
  exact (andb (s1 e) (s2 e)).
Defined.

(* Why3 goal *)
Lemma filter_def {a:Type} {a_WT:WhyType a} :
  forall (s:a -> Init.Datatypes.bool) (p:a -> Init.Datatypes.bool) (x:a),
  mem x (filter s p) <-> mem x s /\ ((p x) = Init.Datatypes.true).
Proof.
intros s p x.
apply Bool.andb_true_iff.
Qed.

(* Why3 goal *)
Lemma subset_filter {a:Type} {a_WT:WhyType a} :
  forall (s:a -> Init.Datatypes.bool) (p:a -> Init.Datatypes.bool),
  subset (filter s p) s.
Proof.
intros s p x H.
destruct (andb_prop _ _ H) as [H1 _].
exact H1.
Qed.

(* Why3 goal *)
Definition map {a:Type} {a_WT:WhyType a} {b:Type} {b_WT:WhyType b} :
  (a -> b) -> (a -> Init.Datatypes.bool) -> b -> Init.Datatypes.bool.
Proof.
intros f s y.
set (P := fun (x:a) => mem x s /\ y = f x).
assert (inhabited a).
destruct a_WT.
exact (inhabits why_inhabitant).
set (x := epsilon H P).
destruct b_WT.
destruct (why_decidable_eq y (f x)).
exact (s x).
exact false.
Defined.

(* Why3 goal *)
Lemma map'def {a:Type} {a_WT:WhyType a} {b:Type} {b_WT:WhyType b} :
  forall (f:a -> b) (u:a -> Init.Datatypes.bool) (y:b),
  ((map f u y) = Init.Datatypes.true) <->
  (exists x:a, mem x u /\ (y = (f x))).
Proof.
intros f u y.
unfold map, mem.
destruct b_WT.
destruct a_WT.
set (P := fun (x:a) => u x = true /\ y = f x).
set (inh := (inhabits why_inhabitant0)).
generalize (epsilon_spec inh P).
set (x := epsilon inh P).
destruct (classic (exists x, P x)).
destruct (why_decidable_eq y (f x)).
intuition.
unfold P in H1. intuition.
intuition.
unfold P in H1. intuition.
destruct (why_decidable_eq y (f x)).
intuition.
exists x; unfold P; intuition.
intuition.
discriminate H1.
Qed.

(* Why3 goal *)
Lemma mem_map {a:Type} {a_WT:WhyType a} {b:Type} {b_WT:WhyType b} :
  forall (f:a -> b) (u:a -> Init.Datatypes.bool), forall (x:a), mem x u ->
  mem (f x) (map f u).
Proof.
intros f u x h1.
generalize (map'def f u (f x)).
intuition.
apply H1.
exists x; intuition.
Qed.