1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
|
theory Why3_Number
imports
Why3_Int
"HOL-Computational_Algebra.Primes"
begin
section \<open> Parity properties \<close>
why3_open "number/Parity.xml"
why3_vc evenqtdef by arith
why3_vc oddqtdef by arith
why3_vc even_or_odd by auto
why3_vc even_not_odd using assms by simp
why3_vc odd_not_even using assms by simp
why3_vc even_odd using assms by simp
why3_vc odd_even using assms by simp
why3_vc even_even using assms by simp
why3_vc odd_odd using assms by simp
why3_vc even_2k by simp
why3_vc odd_2k1 by simp
why3_vc even_mod2
by (auto simp add: evenqtdef cmod_def sgn_if minus_equation_iff [of n])
why3_end
section \<open> Divisibility \<close>
why3_open "number/Divisibility.xml"
why3_vc dividesqtdef
by (auto simp add: cmod_def sgn_if minus_equation_iff [of n])
why3_vc divides_refl by simp
why3_vc divides_1_n by simp
why3_vc divides_0 by simp
why3_vc divides_left using assms by simp
why3_vc divides_right using assms by simp
why3_vc divides_oppr using assms by simp
why3_vc divides_oppl using assms by simp
why3_vc divides_oppr_rev using assms by simp
why3_vc divides_oppl_rev using assms by simp
why3_vc divides_plusr using assms by simp
why3_vc divides_minusr using assms by simp
why3_vc divides_multl using assms by simp
why3_vc divides_multr using assms by simp
why3_vc divides_factorl by simp
why3_vc divides_factorr by simp
why3_vc divides_n_1 using assms by auto
why3_vc divides_antisym
using assms
by (auto dest: zdvd_antisym_abs)
why3_vc divides_trans using assms by (rule dvd_trans)
why3_vc divides_bounds using assms by (simp add: dvd_imp_le_int)
why3_vc mod_divides_euclidean
using assms
by (auto simp add: emod_def split: if_split_asm)
why3_vc divides_mod_euclidean
using assms
by (simp add: emod_def dvd_eq_mod_eq_0 zabs_def zmod_zminus2_eq_if)
why3_vc mod_divides_computer
using assms
by (auto simp add: cmod_def zabs_def sgn_0_0 zmod_zminus1_eq_if
not_sym [OF less_imp_neq [OF pos_mod_bound]]
split: if_split_asm)
why3_vc divides_mod_computer
using assms
by (simp add: cmod_def dvd_eq_mod_eq_0 zabs_def
zmod_zminus1_eq_if zmod_zminus2_eq_if)
why3_vc even_divides ..
why3_vc odd_divides ..
why3_vc dividesqtspec
by (simp add: dvd_def mult.commute)
why3_end
section \<open> Greatest Common Divisor \<close>
why3_open "number/Gcd.xml"
why3_vc gcd_nonneg by simp
why3_vc gcd_def1 by simp
why3_vc gcd_def2 by simp
why3_vc gcd_def3 using assms by (rule gcd_greatest)
why3_vc gcd_unique using assms
by (simp add: gcd_unique_int [symmetric])
why3_vc Comm by (rule gcd.commute)
why3_vc Assoc by (rule gcd.assoc)
why3_vc gcd_0_pos using assms by simp
why3_vc gcd_0_neg using assms by simp
why3_vc gcd_opp by simp
why3_vc gcd_euclid
using gcd_add_mult [of a "- q" b]
by (simp add: algebra_simps)
why3_vc Gcd_computer_mod
using assms gcd_add_mult [of b "- 1" "a mod b"]
by (simp add: cmod_def zabs_def gcd_red_int [symmetric] sgn_if algebra_simps del: gcd_mod_right)
(simp add: zmod_zminus2_eq_if gcd_red_int [of a b] del: gcd_mod_right)
why3_vc Gcd_euclidean_mod
using assms gcd_add_mult [of b "- 1" "a mod b"]
by (simp add: emod_def zabs_def gcd_red_int [symmetric] algebra_simps del: gcd_mod_right)
(simp add: zmod_zminus2_eq_if gcd_red_int [of a b] del: gcd_mod_right)
why3_vc gcd_mult using assms
by (simp add: gcd_mult_distrib_int [symmetric])
why3_end
section \<open> Prime numbers \<close>
why3_open "number/Prime.xml"
why3_vc primeqtdef
by (auto simp add: prime_int_iff')
why3_vc not_prime_1 by simp
why3_vc prime_2 by simp
why3_vc prime_3 by simp
why3_vc prime_divisors
using assms
by (auto simp add: prime_int_altdef dest: spec [of _ "\<bar>d\<bar>"])
lemma small_divisors_aux:
"1 < (n::nat) \<Longrightarrow> n < p \<Longrightarrow> n dvd p \<Longrightarrow> \<exists>d. prime d \<and> d * d \<le> p \<and> d dvd p"
proof (induct n rule: less_induct)
case (less n)
then obtain m where "p = n * m" by (auto simp add: dvd_def)
show ?case
proof (cases "prime n")
case True
show ?thesis
proof (cases "n \<le> m")
case True
with `p = n * m` `prime n`
show ?thesis by auto
next
case False
then have "m < n" by simp
moreover from `n < p` `p = n * m` have "1 < m" by simp
moreover from `1 < n` `n < p` `p = n * m` have "m < p" by simp
moreover from `p = n * m` have "m dvd p" by simp
ultimately show ?thesis by (rule less)
qed
next
case False
with `1 < n` obtain k where "k dvd n" "k \<noteq> 1" "k \<noteq> n"
by (auto simp add: prime_nat_iff)
with `1 < n` have "k \<le> n" by (simp add: dvd_imp_le)
with `k \<noteq> n` have "k < n" by simp
moreover from `k dvd n` `1 < n` have "k \<noteq> 0" by (rule_tac notI) simp
with `k \<noteq> 1` have "1 < k" by simp
moreover from `k < n` `n < p` have "k < p" by simp
moreover from `k dvd n` `n dvd p` have "k dvd p" by (rule dvd_trans)
ultimately show ?thesis by (rule less)
qed
qed
why3_vc small_divisors
unfolding primeqtdef
proof
show "2 \<le> p" by fact
show "\<forall>n. 1 < n \<and> n < p \<longrightarrow> \<not> n dvd p"
proof (intro strip)
fix n
assume "1 < n \<and> n < p"
show "\<not> n dvd p"
proof
assume "n dvd p"
with `1 < n \<and> n < p`
have "1 < nat n" "nat n < nat p" "nat n dvd nat p"
by (simp_all add: nat_dvd_iff)
then have "\<exists>d. prime d \<and> d * d \<le> nat p \<and> d dvd (nat p)"
by (rule small_divisors_aux)
with `2 \<le> p` obtain d
where d: "prime (int d)" "int d * int d \<le> p" "int d dvd p"
by (auto simp add: int_dvd_int_iff [symmetric] le_nat_iff)
from `prime (int d)` have "2 \<le> int d" by (simp add: prime_ge_2_int)
then have "2 \<le> int d" by simp
with `2 \<le> int d` have "2 * 2 \<le> int d * int d"
by (rule mult_mono) simp_all
with d assms `2 \<le> int d` show False by auto
qed
qed
qed
why3_vc even_prime
proof -
from `prime p` have "0 \<le> p" by (simp add: primeqtdef)
from `prime p` have "2 \<le> p" by (simp add: prime_ge_2_int)
with `prime p` `even p` `0 \<le> p` show ?thesis
by (auto simp add: order_le_less prime_odd_int)
qed
why3_vc odd_prime
proof -
from `prime p` have "2 \<le> p" by (simp add: prime_ge_2_int)
with `prime p` `3 \<le> p` show ?thesis
by (auto simp add: order_le_less prime_odd_int)
qed
why3_end
section \<open> Coprime numbers \<close>
why3_open "number/Coprime.xml"
why3_vc coprimeqtdef by (rule coprime_iff_gcd_eq_1)
why3_vc prime_coprime
proof -
have "(\<forall>n. 1 < n \<and> n < p \<longrightarrow> \<not> n dvd p) =
(\<forall>n. 1 \<le> n \<and> n < p \<longrightarrow> coprime n p)"
proof
assume H: "\<forall>n. 1 < n \<and> n < p \<longrightarrow> \<not> n dvd p"
show "\<forall>n. 1 \<le> n \<and> n < p \<longrightarrow> coprime n p"
proof (intro strip)
fix n
assume H': "1 \<le> n \<and> n < p"
{
fix d
assume "0 \<le> d" "d dvd n" "d dvd p"
with H' have "d \<noteq> 0" by auto
have "d = 1"
proof (rule ccontr)
assume "d \<noteq> 1"
with `0 \<le> d` `d \<noteq> 0` have "1 < d" by simp
moreover from `d dvd p` H' have "d \<le> p" by (auto dest: zdvd_imp_le)
moreover from `d dvd n` H' have "d \<noteq> p" by (auto dest: zdvd_imp_le)
ultimately show False using `d dvd p` H by auto
qed
}
then show "coprime n p"
by (auto simp add: coprime_iff_gcd_eq_1)
qed
next
assume H: "\<forall>n. 1 \<le> n \<and> n < p \<longrightarrow> coprime n p"
show "\<forall>n. 1 < n \<and> n < p \<longrightarrow> \<not> n dvd p"
proof (intro strip notI)
fix n
assume H': "1 < n \<and> n < p" "n dvd p"
then have "1 \<le> n \<and> n < p" by simp
with H have "coprime n p" by simp
with H' show False by (simp add: coprime_iff_gcd_eq_1)
qed
qed
then show ?thesis by (simp add: primeqtdef)
qed
why3_vc Gauss
proof -
from assms
have "coprime a b" "a dvd c * b" by (simp_all add: mult.commute)
then show ?thesis by (simp add: coprime_dvd_mult_left_iff)
qed
why3_vc Euclid
using assms
by (simp add: prime_dvd_multD)
why3_vc gcd_coprime
proof -
have "gcd a (b * c) = gcd (b * c) a" by (simp add: gcd.commute)
also from assms have "coprime a b" by (simp add: gcd.commute coprime_iff_gcd_eq_1)
then have "gcd (b * c) a = gcd c a" by (simp add: gcd_mult_left_left_cancel)
finally show ?thesis by (simp add: gcd.commute)
qed
why3_end
end
|