1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
|
theory Why3_Set
imports
Why3_Setup
Why3_Map
"HOL-Library.FSet"
begin
section \<open> Potentially infinite sets \<close>
definition complement :: "('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" where
"complement S v = Not (S v)"
definition mapi :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> bool)" where
"mapi f s x = Set.member x (image f (Collect s))"
definition filteri :: " ('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" where
"filteri f s x = conj (s x) (f x)"
definition product :: "('a \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> bool) \<Rightarrow> ('a \<times> 'b \<Rightarrow> bool)" where
"product s1 s2 p = conj (s1 (fst p)) (s2 (snd p))"
why3_open "set/Set.xml"
constants
empty = bot
add = insert
remove = Set.remove
union = sup
inter = inf
diff = minus
complement = complement
pick = Eps
all = top
map = mapi
filter = filteri
product = product
why3_vc diffqtdef by (simp add: mem_def)
why3_vc interqtdef by (simp add: mem_def)
why3_vc is_empty_empty by (simp add: constqtdef mem_def set.Set.is_empty_def)
why3_vc unionqtdef by (simp add: mem_def)
why3_vc add_remove
using assms
by (simp add: fun_upd_idem_iff mem_def)
why3_vc remove_add by auto
why3_vc pick_def
using assms
by (auto simp add: mem_def is_empty_def intro: someI_ex)
why3_vc subset_diff
by (simp add: mem_def diffqtdef subset_def)
why3_vc subset_refl
by (simp add: subset_def)
why3_vc subset_trans
using assms
by (simp add: subset_def)
why3_vc subset_remove
by (simp add: mem_def remove_def subset_def)
why3_vc complementqtdef
by (simp add: mem_def complement_def)
why3_vc extensionality
using assms
by (auto simp add: infix_eqeq_def mem_def)
why3_vc mapqtdef by (simp add: mem_def mapi_def image_iff)
why3_vc mem_map
using assms
by (meson facts.mapqtdef mem_def)
why3_vc mem_singleton
by (metis assms constqtdef fun_upd_other mem_def)
why3_vc empty_is_empty
using assms
by (metis Collect_empty_eq Collect_empty_eq_bot is_empty_empty mem_def set.Set.is_empty_def)
why3_vc subset_inter_1
by (simp add: set.Set.subset_def mem_def)
why3_vc subset_inter_2
by (simp add: set.Set.subset_def mem_def)
why3_vc subset_union_1
by (simp add: set.Set.subset_def mem_def)
why3_vc subset_union_2
by (simp add: set.Set.subset_def mem_def)
why3_vc disjoint_diff_s2
by (simp add: disjoint_def mem_def)
why3_vc disjoint_inter_empty
by (simp add: disjoint_def mem_def set.Set.is_empty_def)
why3_vc disjoint_diff_eq
by (smt diffqtdef disjoint_diff_s2 disjoint_inter_empty empty_is_empty
inf.absorb_iff2 inf.cobounded2 inf.idem inf_absorb1 interqtdef le_fun_def)
why3_vc filter_def
by (metis filteri_def mem_def)
why3_vc subset_filter
by (simp add: filter_def subset_def)
why3_vc product_def
by (simp add: product_def mem_def)
why3_end
section \<open> Finite sets \<close>
definition fremove :: "'a \<Rightarrow> 'a fset \<Rightarrow> 'a fset" where
"fremove x A = A - {|x|}"
definition fchoose :: "'a fset \<Rightarrow> 'a" where
"fchoose S = (\<some>x. x |\<in>| S)"
definition is_empty :: "'a fset \<Rightarrow> bool" where
"is_empty S = (S = fempty)"
definition filter :: "'a fset \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'a fset" where
"filter S p = ffilter p S"
why3_open "set/Fset.xml"
constants
mem = fmember
empty = bot
add = finsert
remove = fremove
union = sup
inter = inf
diff = minus
choose = fchoose
all = top
pick = fchoose
filter = filter
map = fimage
types
fset = fset
why3_vc add_def by auto
why3_vc add_remove
using assms
by (auto simp add: fremove_def)
why3_vc remove_add by (simp add: fremove_def)
why3_vc map_def by auto
why3_vc mem_map by (simp add: assms)
why3_vc inter_def by simp
why3_vc union_def by simp
why3_vc remove_def by (auto simp add: fremove_def)
why3_vc diff_def by auto
why3_vc pick_def
using assms
by (auto simp add: fchoose_def is_empty_def intro: someI_ex)
why3_vc subset_diff by (simp add: Fset.subset_def)
why3_vc subset_refl by (simp add: Fset.subset_def)
why3_vc subset_trans
using assms
by (simp add: Fset.subset_def)
why3_vc subset_remove by (auto simp add: Fset.subset_def fremove_def)
why3_vc subset_eq
using assms fcard_seteq
by (metis Fset.subset_def eq_imp_le fsubsetI of_nat_eq_iff)
why3_vc extensionality
using assms
by (simp add: Fset.infix_eqeq_def fset_eqI)
why3_vc cardinal1
proof (cases s rule: fset_strong_cases)
case 1
with assms
show ?thesis by (simp add: fcard_fempty)
next
case (2 s' x)
show ?thesis
proof (cases s' rule: fset_strong_cases)
case 1
with `s = finsert x s'` assms
show ?thesis by (simp add: fchoose_def)
next
case (2 s'' y)
with `s = finsert x s'` assms
show ?thesis by (auto simp add: fcard_finsert_if fchoose_def
split: if_split_asm)
qed
qed
why3_vc cardinal_add by (auto simp add: fcard_finsert_if finsert_absorb)
why3_vc cardinal_empty by (simp add: is_empty_def)
why3_vc cardinal_nonneg by simp
lemma cardinal_remove_in:
"x |\<in>| s \<longrightarrow> int (fcard (fremove x s)) = int (fcard s) - 1"
by (smt cardinal_add(2) fminus_finsert_absorb fremove_def set_finsert)
lemma cardinal_remove_out:
"x |\<notin>| s \<longrightarrow> int (fcard (fremove x s)) = int (fcard s)"
by (simp add: fremove_def)
why3_vc cardinal_remove by (auto simp add: cardinal_remove_out cardinal_remove_in)
why3_vc cardinal_subset
using assms
by (simp add: Fset.subset_def fcard_mono fsubsetI)
why3_vc filter_def by (simp add: Why3_Set.filter_def)
why3_vc cardinal_map
apply (simp add: fcard_def card_def)
by (metis card_def card_image_le finite_fset)
why3_vc cardinal_diff
by (metis fcard_funion_fsubset fcard_mono fminus_finter2 inf.idem inf_commute inf_sup_ord(1) of_nat_diff)
(* by (smt fcard_funion_fsubset fcard_mono finter_lower1 fminus_finter2 inf.idem inf_commute int_ops(6) of_nat_mono)*)
why3_vc mem_singleton
using assms by auto
why3_vc subset_filter
by (simp add: Fset.subset_def Why3_Set.filter_def)
why3_vc cardinal_union
by (smt fcard_funion_finter of_nat_add)
why3_vc empty_is_empty
by (meson Fset.is_empty_def assms bot.extremum_uniqueI fsubsetI)
why3_vc is_empty_empty
by (simp add: cardinal_empty)
why3_vc subset_inter_1
by (simp add: Fset.subset_def)
why3_vc subset_inter_2
by (simp add: Fset.subset_def)
why3_vc subset_union_1
by (simp add: Fset.subset_def)
why3_vc subset_union_2
by (simp add: Fset.subset_def)
why3_vc cardinal_filter
using cardinal_subset subset_filter by blast
why3_vc disjoint_diff_eq
by (smt Fset.disjoint_def Fset.facts.diff_def fsubsetI fsubset_antisym)
why3_vc disjoint_diff_s2
by (simp add: Fset.facts.disjoint_diff_eq)
why3_vc disjoint_inter_empty
by (metis Fset.facts.disjoint_diff_eq Fset.facts.empty_is_empty Fset.facts.is_empty_empty fminus_disjoint fminus_triv)
why3_vc cardinal_inter_disjoint
by (meson Fset.facts.disjoint_inter_empty assms cardinal_empty)
why3_end
end
|