1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
|
ComputerDivision: THEORY
BEGIN
IMPORTING Int
IMPORTING Abs
% do not edit above this line
IMPORTING ints@div, ints@rem
div_total(x: int): int
% Why3 div
div(x:int,
x1:int): MACRO int = IF x1 /= 0 THEN div(x, x1) ELSE div_total(x) ENDIF
% Why3 mod1
mod1(x:int, x1:int): int
mod_total(x: int): int
% Why3 div_mod
div_mod: LEMMA FORALL (x:int, y:int): (NOT (y = 0)) => (x = ((y * div(x,
y)) + mod1(x, y)))
% Why3 div_bound
div_bound: LEMMA FORALL (x:int, y:int): ((x >= 0) AND (y > 0)) =>
((0 <= div(x, y)) AND (div(x, y) <= x))
% Why3 mod_bound
mod_bound: LEMMA FORALL (x:int, y:int): (NOT (y = 0)) =>
(((-abs(y)) < mod1(x, y)) AND (mod1(x, y) < abs(y)))
% Why3 div_sign_pos
div_sign_pos: LEMMA FORALL (x:int, y:int): ((x >= 0) AND (y > 0)) =>
(div(x, y) >= 0)
% Why3 div_sign_neg
div_sign_neg: LEMMA FORALL (x:int, y:int): ((x <= 0) AND (y > 0)) =>
(div(x, y) <= 0)
% Why3 mod_sign_pos
mod_sign_pos: LEMMA FORALL (x:int, y:int): ((x >= 0) AND NOT (y = 0)) =>
(mod1(x, y) >= 0)
% Why3 mod_sign_neg
mod_sign_neg: LEMMA FORALL (x:int, y:int): ((x <= 0) AND NOT (y = 0)) =>
(mod1(x, y) <= 0)
% Why3 rounds_toward_zero
rounds_toward_zero: LEMMA FORALL (x:int, y:int): (NOT (y = 0)) =>
(abs((div(x, y) * y)) <= abs(x))
% Why3 div_1
div_1: LEMMA FORALL (x:int): (div(x, 1) = x)
% Why3 mod_1
mod_1: LEMMA FORALL (x:int): (mod1(x, 1) = 0)
% Why3 div_inf
div_inf: LEMMA FORALL (x:int, y:int): ((0 <= x) AND (x < y)) => (div(x,
y) = 0)
% Why3 mod_inf
mod_inf: LEMMA FORALL (x:int, y:int): ((0 <= x) AND (x < y)) => (mod1(x,
y) = x)
% Why3 div_mult
div_mult: LEMMA FORALL (x:int, y:int, z:int): ((x > 0) AND ((y >= 0) AND
(z >= 0))) => (div(((x * y) + z), x) = (y + div(z, x)))
% Why3 mod_mult
mod_mult: LEMMA FORALL (x:int, y:int, z:int): ((x > 0) AND ((y >= 0) AND
(z >= 0))) => (mod1(((x * y) + z), x) = mod1(z, x))
END ComputerDivision
|