1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
|
Int: THEORY
BEGIN
% do not edit above this line
% Obsolete chunk unit_def
% unit_def: LEMMA FORALL (x:int): (infix_pl(x, zero) = x)
% Obsolete chunk assoc
% assoc: LEMMA FORALL (x:int, y:int, z:int): (infix_pl(infix_pl(x, y),
% z) = infix_pl(x, infix_pl(y, z)))
% Obsolete chunk inv_def
% inv_def: LEMMA FORALL (x:int): (infix_pl(x, prefix_mn(x)) = zero)
% Obsolete chunk comm
% comm: LEMMA FORALL (x:int, y:int): (infix_pl(x, y) = infix_pl(y, x))
% Obsolete chunk assoc1
% assoc1: LEMMA FORALL (x:int, y:int, z:int): (infix_as(infix_as(x, y),
% z) = infix_as(x, infix_as(y, z)))
% Obsolete chunk mul_distr
% mul_distr: LEMMA FORALL (x:int, y:int, z:int): (infix_as(x, infix_pl(y,
% z)) = infix_pl(infix_as(x, y), infix_as(x, z)))
% Obsolete chunk comm1
% comm1: LEMMA FORALL (x:int, y:int): (infix_as(x, y) = infix_as(y, x))
% Obsolete chunk unitary
% unitary: LEMMA FORALL (x:int): (infix_as(one, x) = x)
% Obsolete chunk nontrivialring
% nontrivialring: LEMMA NOT (zero = one)
% Obsolete chunk refl
% refl: LEMMA FORALL (x:int): infix_lseq(x, x)
% Obsolete chunk trans
% trans: LEMMA FORALL (x:int, y:int, z:int): infix_lseq(x, y) =>
% (infix_lseq(y, z) => infix_lseq(x, z))
% Obsolete chunk antisymm
% antisymm: LEMMA FORALL (x:int, y:int): infix_lseq(x, y) => (infix_lseq(y,
% x) => (x = y))
% Obsolete chunk total
% total: LEMMA FORALL (x:int, y:int): infix_lseq(x, y) OR infix_lseq(y, x)
% Obsolete chunk zerolessone
% zerolessone: LEMMA infix_lseq(zero, one)
% Obsolete chunk compatorderadd
% compatorderadd: LEMMA FORALL (x:int, y:int, z:int): infix_lseq(x, y) =>
% infix_lseq(infix_pl(x, z), infix_pl(y, z))
% Obsolete chunk compatordermult
% compatordermult: LEMMA FORALL (x:int, y:int, z:int): infix_lseq(x, y) =>
% (infix_lseq(zero, z) => infix_lseq(infix_as(x, z), infix_as(y, z)))
END Int
|