File: PowerInt.pvs

package info (click to toggle)
why3 1.8.2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 45,028 kB
  • sloc: xml: 185,443; ml: 111,224; ansic: 3,998; sh: 2,578; makefile: 2,568; java: 865; python: 720; javascript: 290; lisp: 205; pascal: 173
file content (51 lines) | stat: -rw-r--r-- 1,340 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
PowerInt: THEORY
 BEGIN
  IMPORTING int@Int
  IMPORTING Real
  % do not edit above this line
  
  % Why3 infix_sldt
  infix_sldt(x:real, y:real): real = Real.infix_sl(x, y)
  
  % Why3 inv
  inv(x:real): real = Real.inv(x)
  
  power_total(x: int) : real
  
  % Why3 power
  power(x:real,
    x1:int): MACRO real =  IF x = 0 AND x1 < 0 THEN power_total(x1) ELSE x^x1 ENDIF
  
  % Why3 power_0
  power_0: LEMMA FORALL (x:real): (power(x, 0) = 1)
  
  % Why3 power_s
  power_s: LEMMA FORALL (x:real, n:int): (n >= 0) => (power(x,
    (n + 1)) = (x * power(x, n)))
  
  % Why3 power_s_alt
  power_s_alt: LEMMA FORALL (x:real, n:int): (n >  0) => (power(x,
    n) = (x * power(x, (n - 1))))
  
  % Why3 power_1
  power_1: LEMMA FORALL (x:real): (power(x, 1) = x)
  
  % Why3 power_sum
  power_sum: LEMMA FORALL (x:real, n:int, m:int): (0 <= n) => ((0 <= m) =>
    (power(x, (n + m)) = (power(x, n) * power(x, m))))
  
  % Why3 power_mult
  power_mult: LEMMA FORALL (x:real, n:int, m:int): (0 <= n) => ((0 <= m) =>
    (power(x, (n * m)) = power(power(x, n), m)))
  
  % Why3 power_mult2
  power_mult2: LEMMA FORALL (x:real, y:real, n:int): (0 <= n) =>
    (power((x * y), n) = (power(x, n) * power(y, n)))
  
  % Why3 pow_ge_one
  pow_ge_one: LEMMA FORALL (x:real, n:int): ((0 <= n) AND (1 <= x)) =>
    (1 <= power(x, n))
  
  
 END PowerInt