File: Real.pvs

package info (click to toggle)
why3 1.8.2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 45,028 kB
  • sloc: xml: 185,443; ml: 111,224; ansic: 3,998; sh: 2,578; makefile: 2,568; java: 865; python: 720; javascript: 290; lisp: 205; pascal: 173
file content (97 lines) | stat: -rw-r--r-- 3,291 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
Real: THEORY
 BEGIN
  % do not edit above this line
  
  % Why3 inv
  inv(x:real): MACRO real = IF x /= 0 THEN 1/x ELSE 0 ENDIF  % make it total using 0
  
  % Why3 infix_sl
  infix_sl(x:real, y:real): real = (x * inv(y))
  
  % Why3 add_div
  add_div: LEMMA FORALL (x:real, y:real, z:real): (NOT (z = 0)) =>
    (infix_sl((x + y), z) = (infix_sl(x, z) + infix_sl(y, z)))
  
  % Why3 sub_div
  sub_div: LEMMA FORALL (x:real, y:real, z:real): (NOT (z = 0)) =>
    (infix_sl((x - y), z) = (infix_sl(x, z) - infix_sl(y, z)))
  
  % Why3 neg_div
  neg_div: LEMMA FORALL (x:real, y:real): (NOT (y = 0)) => (infix_sl((-x),
    y) = (-infix_sl(x, y)))
  
  % Obsolete chunk unit_def
  % unit_def: LEMMA FORALL (x:real): (infix_pl(x, zero) = x)
  
  % Obsolete chunk assoc
  % assoc: LEMMA FORALL (x:real, y:real, z:real): (infix_pl(infix_pl(x, y),
  %   z) = infix_pl(x, infix_pl(y, z)))
  
  % Obsolete chunk inv_def
  % inv_def: LEMMA FORALL (x:real): (infix_pl(x, prefix_mn(x)) = zero)
  
  % Obsolete chunk comm
  % comm: LEMMA FORALL (x:real, y:real): (infix_pl(x, y) = infix_pl(y, x))
  
  % Obsolete chunk assoc1
  % assoc1: LEMMA FORALL (x:real, y:real, z:real): (infix_as(infix_as(x, y),
  %   z) = infix_as(x, infix_as(y, z)))
  
  % Obsolete chunk mul_distr
  % mul_distr: LEMMA FORALL (x:real, y:real, z:real): (infix_as(x, infix_pl(y,
  %   z)) = infix_pl(infix_as(x, y), infix_as(x, z)))
  
  % Obsolete chunk comm1
  % comm1: LEMMA FORALL (x:real, y:real): (infix_as(x, y) = infix_as(y, x))
  
  % Obsolete chunk unitary
  % unitary: LEMMA FORALL (x:real): (infix_as(one, x) = x)
  
  % Obsolete chunk nontrivialring
  % nontrivialring: LEMMA NOT (zero = one)
  
  % Obsolete chunk inverse
  % inverse: LEMMA FORALL (x:real): (NOT (x = zero)) => (infix_as(x,
  %   inv(x)) = one)
  
  % Obsolete chunk assoc_mul_div
  % assoc_mul_div: LEMMA FORALL (x:real, y:real, z:real): (NOT (z = zero)) =>
  %   (infix_sl(infix_as(x, y), z) = infix_as(x, infix_sl(y, z)))
  
  % Obsolete chunk assoc_div_mul
  % assoc_div_mul: LEMMA FORALL (x:real, y:real, z:real): ((NOT (y = zero)) AND
  %   NOT (z = zero)) => (infix_sl(infix_sl(x, y), z) = infix_sl(x, infix_as(y,
  %   z)))
  
  % Obsolete chunk assoc_div_div
  % assoc_div_div: LEMMA FORALL (x:real, y:real, z:real): ((NOT (y = zero)) AND
  %   NOT (z = zero)) => (infix_sl(x, infix_sl(y, z)) = infix_sl(infix_as(x,
  %   z), y))
  
  % Obsolete chunk refl
  % refl: LEMMA FORALL (x:real): infix_lseq(x, x)
  
  % Obsolete chunk trans
  % trans: LEMMA FORALL (x:real, y:real, z:real): infix_lseq(x, y) =>
  %   (infix_lseq(y, z) => infix_lseq(x, z))
  
  % Obsolete chunk antisymm
  % antisymm: LEMMA FORALL (x:real, y:real): infix_lseq(x, y) => (infix_lseq(y,
  %   x) => (x = y))
  
  % Obsolete chunk total
  % total: LEMMA FORALL (x:real, y:real): infix_lseq(x, y) OR infix_lseq(y, x)
  
  % Obsolete chunk zerolessone
  % zerolessone: LEMMA infix_lseq(zero, one)
  
  % Obsolete chunk compatorderadd
  % compatorderadd: LEMMA FORALL (x:real, y:real, z:real): infix_lseq(x, y) =>
  %   infix_lseq(infix_pl(x, z), infix_pl(y, z))
  
  % Obsolete chunk compatordermult
  % compatordermult: LEMMA FORALL (x:real, y:real, z:real): infix_lseq(x, y) =>
  %   (infix_lseq(zero, z) => infix_lseq(infix_as(x, z), infix_as(y, z)))
  
 END Real