1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
|
Real: THEORY
BEGIN
% do not edit above this line
% Why3 inv
inv(x:real): MACRO real = IF x /= 0 THEN 1/x ELSE 0 ENDIF % make it total using 0
% Why3 infix_sl
infix_sl(x:real, y:real): real = (x * inv(y))
% Why3 add_div
add_div: LEMMA FORALL (x:real, y:real, z:real): (NOT (z = 0)) =>
(infix_sl((x + y), z) = (infix_sl(x, z) + infix_sl(y, z)))
% Why3 sub_div
sub_div: LEMMA FORALL (x:real, y:real, z:real): (NOT (z = 0)) =>
(infix_sl((x - y), z) = (infix_sl(x, z) - infix_sl(y, z)))
% Why3 neg_div
neg_div: LEMMA FORALL (x:real, y:real): (NOT (y = 0)) => (infix_sl((-x),
y) = (-infix_sl(x, y)))
% Obsolete chunk unit_def
% unit_def: LEMMA FORALL (x:real): (infix_pl(x, zero) = x)
% Obsolete chunk assoc
% assoc: LEMMA FORALL (x:real, y:real, z:real): (infix_pl(infix_pl(x, y),
% z) = infix_pl(x, infix_pl(y, z)))
% Obsolete chunk inv_def
% inv_def: LEMMA FORALL (x:real): (infix_pl(x, prefix_mn(x)) = zero)
% Obsolete chunk comm
% comm: LEMMA FORALL (x:real, y:real): (infix_pl(x, y) = infix_pl(y, x))
% Obsolete chunk assoc1
% assoc1: LEMMA FORALL (x:real, y:real, z:real): (infix_as(infix_as(x, y),
% z) = infix_as(x, infix_as(y, z)))
% Obsolete chunk mul_distr
% mul_distr: LEMMA FORALL (x:real, y:real, z:real): (infix_as(x, infix_pl(y,
% z)) = infix_pl(infix_as(x, y), infix_as(x, z)))
% Obsolete chunk comm1
% comm1: LEMMA FORALL (x:real, y:real): (infix_as(x, y) = infix_as(y, x))
% Obsolete chunk unitary
% unitary: LEMMA FORALL (x:real): (infix_as(one, x) = x)
% Obsolete chunk nontrivialring
% nontrivialring: LEMMA NOT (zero = one)
% Obsolete chunk inverse
% inverse: LEMMA FORALL (x:real): (NOT (x = zero)) => (infix_as(x,
% inv(x)) = one)
% Obsolete chunk assoc_mul_div
% assoc_mul_div: LEMMA FORALL (x:real, y:real, z:real): (NOT (z = zero)) =>
% (infix_sl(infix_as(x, y), z) = infix_as(x, infix_sl(y, z)))
% Obsolete chunk assoc_div_mul
% assoc_div_mul: LEMMA FORALL (x:real, y:real, z:real): ((NOT (y = zero)) AND
% NOT (z = zero)) => (infix_sl(infix_sl(x, y), z) = infix_sl(x, infix_as(y,
% z)))
% Obsolete chunk assoc_div_div
% assoc_div_div: LEMMA FORALL (x:real, y:real, z:real): ((NOT (y = zero)) AND
% NOT (z = zero)) => (infix_sl(x, infix_sl(y, z)) = infix_sl(infix_as(x,
% z), y))
% Obsolete chunk refl
% refl: LEMMA FORALL (x:real): infix_lseq(x, x)
% Obsolete chunk trans
% trans: LEMMA FORALL (x:real, y:real, z:real): infix_lseq(x, y) =>
% (infix_lseq(y, z) => infix_lseq(x, z))
% Obsolete chunk antisymm
% antisymm: LEMMA FORALL (x:real, y:real): infix_lseq(x, y) => (infix_lseq(y,
% x) => (x = y))
% Obsolete chunk total
% total: LEMMA FORALL (x:real, y:real): infix_lseq(x, y) OR infix_lseq(y, x)
% Obsolete chunk zerolessone
% zerolessone: LEMMA infix_lseq(zero, one)
% Obsolete chunk compatorderadd
% compatorderadd: LEMMA FORALL (x:real, y:real, z:real): infix_lseq(x, y) =>
% infix_lseq(infix_pl(x, z), infix_pl(y, z))
% Obsolete chunk compatordermult
% compatordermult: LEMMA FORALL (x:real, y:real, z:real): infix_lseq(x, y) =>
% (infix_lseq(zero, z) => infix_lseq(infix_as(x, z), infix_as(y, z)))
END Real
|