1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
|
(********************************************************************)
(* *)
(* The Why3 Verification Platform / The Why3 Development Team *)
(* Copyright 2010-2025 -- Inria - CNRS - Paris-Saclay University *)
(* *)
(* This software is distributed under the terms of the GNU Lesser *)
(* General Public License version 2.1, with the special exception *)
(* on linking described in file LICENSE. *)
(********************************************************************)
(*s Transformation which removes most hypothesis, only keeping the one
a graph-based heuristic finds close enough to the goal *)
open Why3
open Ident
open Term
open Decl
open Task
(* lots of modules and functors applications to be used later *)
module Int_Dft = struct
type t = int
let compare = Stdlib.compare
let default = max_int
end
module GP = Graph.Persistent.Digraph.ConcreteLabeled(
struct
type t = lsymbol
let compare = ls_compare
let hash = ls_hash
let equal = ls_equal
end)(Int_Dft)
(** a way to compare/hash expressions *)
module ExprNode = struct
type t = Term.term
let compare = t_compare
let hash = t_hash
let equal = t_equal
end
module GC = Graph.Persistent.Graph.Concrete(ExprNode)
module Sls = Set.Make(GP.V)
module Sexpr = Set.Make(ExprNode)
(** prints the given expression, transforming spaces into _ *)
let string_of_expr_node node =
let white_space = Re.Str.regexp "[ ()]" in
let translate x = Re.Str.global_replace white_space "_" x in
let repr = Format.asprintf "@[%a@]" Pretty.print_term node in
translate repr
(* for debugging (graph printing) purposes *)
module Dot_ = Graph.Graphviz.Dot(struct
include GC
let graph_attributes _ = []
let default_vertex_attributes _ = []
let vertex_attributes _ = []
let vertex_name x = string_of_expr_node (GC.V.label x)
let get_subgraph _ = None
let default_edge_attributes _ = []
let edge_attributes _ = []
end)
(** some useful things *)
module Util = struct
let print_clause fmt = Format.fprintf fmt "@[[%a]@]"
(Pp.print_list Pp.comma Pretty.print_term)
let print_clauses fmt = Format.fprintf fmt "[%a]@."
(Pp.print_list Pp.comma print_clause)
(** [combinator] applied to all combinaisons of elements
of [left] and [right] *)
let map_complete combinator left right =
let explorer left_elt =
List.map (fun right_elt -> combinator left_elt right_elt) right in
List.flatten (List.map explorer left)
(** all combinaisons of elements of [left] and [right],
folded with [combinator] starting with [acc] *)
let fold_complete combinator acc left right =
let explorer acc left_elt =
List.fold_left
(fun acc right_elt -> combinator acc left_elt right_elt)
acc right in
List.fold_left explorer acc left
(** given two lists of sets of expr, returns the list made from their union.
It is like zipping the lists with Sexpr.union. *)
let rec merge_list l1 l2 = match l1,l2 with
| x::xs,y::ys -> (Sexpr.union x y) :: merge_list xs ys
| _,[] -> l1
| [],_ -> l2
end
(** module used to reduce formulae to Normal Form *)
module NF = struct (* add memoization, one day ? *)
(* TODO ! *)
(** all quantifiers in prenex form, currently just identity *)
let prenex_fmla fmla =
Format.eprintf "prenex_fmla: @[%a@]@." Pretty.print_term fmla;
fmla
(** creates a fresh non-quantified formula, representing a quantified formula *)
let create_fmla (vars:Term.vsymbol list) : Term.term =
let pred = create_psymbol (id_fresh "temoin")
(List.map (fun var -> var.vs_ty) vars) in
ps_app pred (List.map t_var vars)
(** transforms a formulae into its Normal Form as a list of clauses.
The first argument is a hastable from formulae to formulae.
A clause is a list of formulae, so this function returns a list
of list of formulae. *)
let rec transform fmlaTable fmla =
Format.eprintf "transform: @[%a@]@." Pretty.print_term fmla;
match fmla.t_node with
| Tquant (_,f_bound) ->
let var,_,f = t_open_quant f_bound in
traverse fmlaTable fmla var f
| Tbinop (_,_,_) ->
let clauses = split fmla in
Format.eprintf "split: @[%a@]@." Util.print_clause clauses;
begin match clauses with
| [f] -> begin match f.t_node with
| Tbinop (Tor,f1,f2) ->
let left = transform fmlaTable f1 in
let right = transform fmlaTable f2 in
Util.map_complete List.append left right
| _ -> [[f]]
end
| _ -> List.concat (List.map (transform fmlaTable) clauses)
end
| Tnot f -> handle_not fmlaTable fmla f
| Tapp (_,_) -> [[fmla]]
| Ttrue | Tfalse -> [[fmla]]
| Tif (_,_,_) -> failwith "if formulae not handled"
| Tlet (_,_) -> failwith "let formulae not handled"
| Tcase (_,_) -> failwith "case formulae not handled"
| Tvar _ | Tconst _ | Teps _ -> raise (FmlaExpected fmla)
(** travers prefix quantifiers until it reaches a non-quantified formula,
collecting bounded vars encountered *)
and traverse fmlaTable old_fmla vars fmla = match fmla.t_node with
| Tquant (_,f_bound) ->
let var,_,f = t_open_quant f_bound in
traverse fmlaTable old_fmla (var@vars) f
| _ ->
if Hterm.mem fmlaTable fmla then
[[Hterm.find fmlaTable fmla]]
else
let new_fmla = create_fmla vars in
Hterm.add fmlaTable old_fmla new_fmla;
Hterm.add fmlaTable new_fmla new_fmla;
[[new_fmla]]
(** skips prenex quantifiers *)
and skipPrenex fmlaTable fmla = match fmla.t_node with
| Tquant (_,f_bound) ->
let _,_,f = t_open_quant f_bound in
skipPrenex fmlaTable f
| _ -> transform fmlaTable fmla
(** logical binary operators splitting *)
and split f = match f.t_node with
| Tbinop (Timplies,{t_node = Tbinop (Tor, h1, h2)},f2) ->
(split (t_binary Timplies h1 f2)) @ (split (t_binary Timplies h2 f2))
| Tbinop (Timplies,f1,f2) ->
let clauses = split f2 in
if List.length clauses >= 2 then
List.concat
(List.map (fun f -> split (t_binary Timplies f1 f)) clauses)
else split (t_or (t_not f1) f2)
| Tbinop (Tand,f1,f2) -> [f1; f2]
| _ -> [f]
(** negation operator handling (with de morgan rules) *)
and handle_not fmlaTable old_f f = match f.t_node with
| Tquant (Tforall,f_bound) ->
let vars,triggers,f1 = t_open_quant f_bound in
transform fmlaTable (t_exists_close vars triggers (t_not f1))
| Tnot f1 -> transform fmlaTable f1
| Tbinop (Tand,f1,f2) ->
transform fmlaTable (t_or (t_not f1) (t_not f2))
| Tbinop (Tor,f1,f2) ->
transform fmlaTable (t_and (t_not f1) (t_not f2))
| Tbinop (Timplies,f1,f2) ->
transform fmlaTable (t_and f1 (t_not f2))
| Tbinop (Tiff,f1,f2) ->
transform fmlaTable (t_or (t_and f1 (t_not f2)) (t_and (t_not f1) f2))
| _ -> [[old_f]] (* default case *)
(** the function to use to effectively transform into a normal form *)
let make_clauses fmlaTable prop =
let prenex_fmla = prenex_fmla prop in
let clauses = skipPrenex fmlaTable prenex_fmla in
Format.eprintf "==>@ @[%a@]@.@." Util.print_clauses clauses;
clauses
end
(** module used to compute the graph of relations between constants *)
module GraphConstant = struct
(** memoizing for formulae and terms, and then expressions *)
let findF fTbl fmla = try
Hterm.find fTbl fmla
with Not_found ->
let new_v = GC.V.create fmla in
Hterm.add fTbl fmla new_v;
(* Format.eprintf "generating new vertex: %a@."
Pretty.print_term fmla; *)
new_v
let findT tTbl term = try
Hterm.find tTbl term
with Not_found ->
let new_v = GC.V.create term in
Hterm.add tTbl term new_v;
(* Format.eprintf "generating new vertex: %a@."
Pretty.print_term fmla; *)
new_v
(** analyse dynamic dependencies in one atomic formula, from the bottom *)
let rec analyse_fmla_base fTbl tTbl gc fmla =
let gc,_ = analyse_fmla fTbl tTbl (gc,[]) fmla in gc
(** recursive function used by the previous function *)
and analyse_fmla fTbl tTbl (gc,vertices) fmla = match fmla.t_node with
| Tapp (_,terms) ->
let gc,sub_vertices =
List.fold_left (analyse_term fTbl tTbl) (gc,[]) terms in
(* make a clique with [sub_vertices] elements *)
let gc = Util.fold_complete GC.add_edge gc sub_vertices sub_vertices in
let pred_vertex = findF fTbl fmla in
(* add edges between [pred_vertex] and [sub_vertices] *)
let gc = List.fold_left
(fun gc term_vertex -> GC.add_edge gc pred_vertex term_vertex)
gc sub_vertices in
(gc, pred_vertex :: vertices)
| _ -> TermTF.t_fold (analyse_term fTbl tTbl) (analyse_fmla fTbl tTbl)
(gc,vertices) fmla
(** explore terms. mutually recursive with the previous function *)
and analyse_term fTbl tTbl (gc,vertices) term = match term.t_node with
| Tvar _ | Tconst _ ->
let vertex = findT tTbl term in
(gc,vertex::vertices)
| Tapp (_,terms) ->
let gc,sub_vertices =
List.fold_left (analyse_term fTbl tTbl) (gc,[]) terms in
(* make a clique with [sub_vertices] elements *)
let gc = Util.fold_complete GC.add_edge gc sub_vertices sub_vertices in
let func_vertex = findT tTbl term in
(* add edges between [func_vertex] and [sub_vertices] *)
let gc = List.fold_left
(fun gc term_vertex -> GC.add_edge gc func_vertex term_vertex)
gc sub_vertices in
(gc, func_vertex :: vertices)
| _ -> TermTF.t_fold (analyse_term fTbl tTbl) (analyse_fmla fTbl tTbl)
(gc,vertices) term
(** analyse a single clause by folding analyse_fmla_base over it *)
let analyse_clause fTbl tTbl gc clause =
List.fold_left (analyse_fmla_base fTbl tTbl) gc clause
(** analyses a list of clauses :
- fold over clauses with analyse_clause *)
let analyse_clauses fTbl tTbl gc clauses =
List.fold_left (analyse_clause fTbl tTbl) gc clauses
end
(** module used to compute the directed graph of predicates *)
module GraphPredicate = struct
exception Exit of lsymbol
(** test for negative formulae *)
let is_negative = function
| { t_node = Tnot _ } -> true
| _ -> false
(** assuming the formula looks like p(t1,t2...),
returns the symbol p *)
let extract_symbol fmla =
let rec search = function
| { t_node = Tapp(p,_) } -> raise (Exit p)
| f -> TermTF.t_map (fun t->t) search f in
try ignore (search fmla);
Format.eprintf "invalid formula: ";
Pretty.print_term Format.err_formatter fmla; assert false
with Exit p -> p
let find symbTbl x = try
Hls.find symbTbl x
with Not_found ->
let new_v = GP.V.create x in
Hls.add symbTbl x new_v;
(* Format.eprintf "generating new vertex: %a@." Pretty.print_ls x; *)
new_v
(** analyse a single clause, and creates an edge between every positive
litteral and every negative litteral of [clause] in [gp] graph. *)
let analyse_clause symbTbl gp clause =
let get_symbol x = find symbTbl (extract_symbol x) in
let negative,positive = List.partition is_negative clause in
let negative = List.map get_symbol negative in
let positive = List.map get_symbol positive in
let n = List.length clause in
let add left gp right =
try
let old = GP.find_edge gp left right in
if GP.E.label old <= n
then gp (* old edge is fine *)
else
let new_gp = GP.remove_edge_e gp old in
assert (not (GP.mem_edge new_gp left right));
GP.add_edge_e gp (GP.E.create left n right)
with Not_found ->
let e = GP.E.create left n right in
GP.add_edge_e gp e in
List.fold_left (* add an edge from every negative to any positive *)
(fun gp left ->
List.fold_left (add left) gp positive) gp negative
let analyse_clauses symbTbl gp clauses =
List.fold_left (analyse_clause symbTbl) gp clauses
(** add a symbol to the graph as a new vertex *)
let add_symbol symbTbl gp lsymbol =
GP.add_vertex gp (find symbTbl lsymbol)
end
(** module that makes the final selection *)
module Select = struct
(** gets all predicates symbols of the formula *)
let get_predicates fmla =
let id acc _ = acc in
let rec explore acc fmla = match fmla.t_node with
| Tapp (pred,_) -> pred::acc
| _ -> TermTF.t_fold id explore acc fmla
in explore [] fmla
(** gets all predicate symbols from a clause *)
let get_clause_predicates acc clause =
let rec fmla_get_pred ?(pos=true) acc fmla = match fmla.t_node with
| Tnot f -> fmla_get_pred ~pos:false acc f
| Tapp (pred,_) -> (pred, (if pos then `Positive else `Negative))::acc
| _ -> failwith "bad formula in get_predicates !"
in List.fold_left (fmla_get_pred ?pos:None) acc clause
(** get all sub-formulae *)
let get_sub_fmlas fTbl tTbl fmla =
let rec gather_sub_fmla fTbl tTbl acc fmla = match fmla.t_node with
| Tapp (_,terms) ->
let acc = List.fold_left (gather_sub_term fTbl tTbl) acc terms in
GraphConstant.findF fTbl fmla :: acc
| _ -> TermTF.t_fold (gather_sub_term fTbl tTbl)
(gather_sub_fmla fTbl tTbl) acc fmla
and gather_sub_term fTbl tTbl acc term = match term.t_node with
| Tapp (_,terms) ->
let acc = List.fold_left (gather_sub_term fTbl tTbl) acc terms in
GraphConstant.findT tTbl term :: acc
| Tconst _ | Tvar _ -> GraphConstant.findT tTbl term :: acc
| _ -> TermTF.t_fold (gather_sub_term fTbl tTbl)
(gather_sub_fmla fTbl tTbl) acc term in
gather_sub_fmla fTbl tTbl [] fmla
(** get the predecessors of [positive] in the graph [gp], at distance <= [i]*)
let rec get_predecessors i gp acc positive =
if i < 0 then acc
else
let acc = Sls.add positive acc in
List.fold_left (follow_edge gp i)
acc (GP.pred_e gp positive)
and follow_edge ?(forward=false) gp i acc edge =
let f = if forward then get_successors else get_predecessors in
f (i - GP.E.label edge) gp acc
((if forward then GP.E.dst else GP.E.src) edge)
and get_successors j gp acc negative =
if j < 0 then acc
else
let acc = Sls.add negative acc in
List.fold_left (follow_edge ~forward:true gp j)
acc (GP.succ_e gp negative)
exception FixPoint
exception Exit of Sexpr.t list
(** builds the list of reachable nodes in a non-directed graph (of constants)*)
let build_relevant_variables gc goal_clause =
let rec add_literal acc f = match f.t_node with
| Tnot f -> add_literal acc f
| Tapp _ -> Sexpr.add f acc
| _ -> failwith "bad literal in the goal clause" in
let l0 = List.fold_left add_literal Sexpr.empty goal_clause in
(* explore one more step *)
let rec one_step cur =
let step = Sexpr.fold explore cur [cur;cur] in
Format.eprintf "one step made !@.";
step
(* explores the neighbours of [vertex] *)
and explore vertex l = match l with [_next_cur;cur] ->
(* [changed] indicates whether a vertex has been added;
[v] is a vertex *)
let find_odd v ((acc,_changed) as old) =
if Sexpr.mem v acc then old else
let count = GC.fold_pred
(fun v2 count -> if Sexpr.mem v2 acc then count+1 else count)
gc v 0 in (* how many predecessors in acc ? *)
if count >= 2 then (Sexpr.add v acc,true) else old in
let find_even prev_step v ((acc,_changed) as old) =
if Sexpr.mem v prev_step || Sexpr.mem v acc then old else
if GC.fold_pred (fun v2 bool -> bool || (Sexpr.mem v2 acc))
gc v false (* connected to a vertex in acc ? *)
then (Sexpr.add v acc, true) else old in
let next_cur_odd,has_changed = (* compute 2^n+1 elts *)
GC.fold_succ find_odd gc vertex (cur,false) in
let next_cur_even,has_changed = (* compute 2^n+2 elts *)
GC.fold_succ (find_even next_cur_odd)
gc vertex (cur,has_changed) in
if has_changed then [next_cur_even;next_cur_odd]
else raise FixPoint
| _ -> assert false (*only not to have warnings on non-exhaustive match*)
(* iterates [one_step] until an exception is raised *)
and control cur acc =
let next_acc = try
let next_step = one_step cur in
next_step @ acc (* next step contains *2* steps *)
with FixPoint ->
Format.eprintf "[control]: fixpoint reached";
raise (Exit acc) in
control (List.hd next_acc) next_acc in
try
ignore (control l0 [l0]);
[l0] (* never returns. this is an odd step (step 1) *)
with Exit answer ->
List.rev answer
(* TODO : be more clear... *)
(** determines if a proposition is pertinent w.r.t the given goal formula,
from data stored in the graph [gp] given.
[i] is the parameter of predicate graph ([gp]) based filtering.
[j] is the parameter for dynamic constants ([gc]) dependency filtering *)
let is_pertinent_predicate symTbl goal_clauses ?(i=4) gp fmla =
let is_negative = function
| (_,`Negative) -> true
| (_,`Positive) -> false in
let find_secure symbTbl x =
try Hls.find symbTbl x
with Not_found ->
Format.eprintf "failure finding %a !@." Pretty.print_ls x;
raise Not_found in
let goal_predicates =
List.fold_left get_clause_predicates [] goal_clauses in
let predicates = get_predicates fmla in
let negative,positive = List.partition is_negative goal_predicates in
let negative,positive = List.map fst negative, List.map fst positive in
let negative = List.map (find_secure symTbl) negative in (* to be optimized ? *)
let positive = List.map (find_secure symTbl) positive in
let predicates = List.map (find_secure symTbl) predicates in
(* list of negative predecessors of any positive predicate of the goal,
at distance <= i *)
let predecessors = List.fold_left (get_predecessors i gp) Sls.empty positive in
let successors = List.fold_left (get_successors i gp) Sls.empty negative in
(* a predicates is accepted iff all its predicates are close enough in
successors or predecessors lists *)
List.for_all
(fun x -> if Sls.mem x predecessors || Sls.mem x successors
then true else begin Format.eprintf "%a not close enough (dist %d)@."
Pretty.print_ls (GP.V.label x) i; false end)
predicates
(** tests whether a formula is pertinent according to the dynamic
dependency criterion (using the undirected graph gc). *)
let is_pertinent_dynamic fTbl tTbl goal_clauses ?(j=4) gc =
let relevant_variables = (* ideally, there should be only one goal clause *)
List.fold_left Util.merge_list []
(List.map (build_relevant_variables gc) goal_clauses) in
function fmla ->
let rec is_close_enough x l count = match (l,count) with
| _,n when n < 0 -> false
| y::_,_ when Sexpr.mem x y -> true
| _::ys,count -> is_close_enough x ys (count-1)
| _,_ ->
false (* case where the fmla is not reachable from goal vars *) in
let is_acceptable fmla = is_close_enough fmla relevant_variables j in
let sub_fmlas = get_sub_fmlas fTbl tTbl fmla in
let sub_fmlas = List.map GC.V.label sub_fmlas in
List.for_all is_acceptable sub_fmlas
(** preprocesses the goal formula and the graph, and returns a function
that will accept or not axioms according to their relevance.
This is the function directly used to filter axioms. *)
let filter fTbl tTbl symTbl goal_clauses (gc,gp) decl =
match decl.d_node with
| Dtype _ | Ddata _ | Dparam _ | Dlogic _ | Dind _ -> [decl]
| Dprop (Paxiom,_,fmla) -> (* filter only axioms *)
Format.eprintf "filter: @[%a@]@." Pretty.print_term fmla;
let goal_exprs = goal_clauses in
let return_value =
if is_pertinent_predicate symTbl goal_clauses gp fmla &&
is_pertinent_dynamic fTbl tTbl goal_exprs gc fmla
then [decl] else [] in
if return_value = [] then Format.eprintf "NO@.@."
else Format.eprintf "YES@.@.";
return_value
| Dprop(_,_,_) -> [decl]
end
(** persistent incremental tables *)
let fmlaTable = Hterm.create 17
let fTbl = Hterm.create 17
let tTbl = Hterm.create 17
let symbTbl = Hls.create 17
(** collects data on predicates and constants in task *)
let collect_info =
let analyse_prop is_goal gc gp prop =
let clauses = NF.make_clauses fmlaTable prop in
(if is_goal then Some clauses else None),
GraphConstant.analyse_clauses fTbl tTbl gc clauses,
GraphPredicate.analyse_clauses symbTbl gp clauses
in
let update task_head (last_clauses,gc,gp) =
assert (last_clauses = None);
match task_head.task_decl.Theory.td_node with
| Theory.Decl {d_node = Dprop (Pgoal,_,prop_decl)} ->
analyse_prop true gc gp prop_decl
| Theory.Decl {d_node = Dprop (_,_,prop_decl)} ->
analyse_prop false gc gp prop_decl
| Theory.Decl {d_node = Dparam ls} ->
None, gc, GraphPredicate.add_symbol symbTbl gp ls
| Theory.Decl {d_node = Dlogic dl} ->
let add_symbol gp (ls,_) =
GraphPredicate.add_symbol symbTbl gp ls in
let gp = List.fold_left add_symbol gp dl in
let add_ld (_,gc,gp) (_,ld) =
analyse_prop false gc gp (Decl.ls_defn_axiom ld) in
List.fold_left add_ld (None,gc,gp) dl
| Theory.Decl {d_node = Dind (_,il)} ->
let add_symbol gp (ls,_) =
GraphPredicate.add_symbol symbTbl gp ls in
let gp = List.fold_left add_symbol gp il in
let add_id (_,gc,gp) (_,prop) =
analyse_prop false gc gp prop in
let add_id (_,gc,gp) (_,il) =
List.fold_left add_id (None,gc,gp) il in
List.fold_left add_id (None,gc,gp) il
| _ -> None,gc,gp
in
Trans.fold update (None, GC.empty, GP.empty)
(** the transformation, made from applying collect_info and
then mapping Select.filter *)
let transformation task =
(* first, collect data in 2 graphes *)
let (last_clauses,gc,gp) = Trans.apply collect_info task in
Format.eprintf "graph: @\n@\n%a@\n@." Dot_.fprint_graph gc;
(* get the goal *)
let goal_clauses = match last_clauses with
| None -> failwith "no goal !"
| Some clauses -> clauses in
(* filter one declaration at once *)
Trans.apply
(Trans.decl
(Select.filter fTbl tTbl symbTbl goal_clauses (gc,gp)) None) task
(** the transformation to be registered *)
let hypothesis_selection = Trans.store transformation
let () = Trans.register_transform "hypothesis_selection" hypothesis_selection
~desc:"Hypothesis@ selection."
(*
Local Variables:
compile-command: "unset LANG; make"
End:
vim:foldmethod=indent:foldnestmax=1
*)
|