1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
|
(** {1 Machine Arithmetic} *)
(** {2 Integer Division}
It is checked that divisor is not null.
*)
module Int
use export int.Int
use export int.ComputerDivision
let (/) (x: int) (y: int)
requires { [@expl:check division by zero] y <> 0 }
ensures { result = div x y }
= div x y
let (%) (x: int) (y: int)
requires { [@expl:check modulo by zero] y <> 0 }
ensures { result = mod x y }
= mod x y
end
(** {2 Machine integers}
Bounded integers, typically n-bit signed and unsigned integers, go
here. We first introduce a generic theory `Bounded_int` of bounded
integers, with minimal and maximal values (resp. `min` and `max`).
Then we instantiate it to get 32-bit and 64-bit signed and unsigned integers
(`Int32`, `UInt32`, `Int64`, and `UInt64`) as well as 31-bit and 63-bit signed
integers (`Int31` and `Int63`) to be used in OCaml programs.
*)
module Bounded_int
use int.Int
type t
constant min : int
constant max : int
function to_int (n:t) : int
meta coercion function to_int
meta "model_projection" function to_int
val to_int (n:t) : int
ensures { result = n }
predicate in_bounds (n:int) = min <= n <= max
axiom to_int_in_bounds: forall n:t. in_bounds n
val of_int (n:int) : t
requires { [@expl:integer overflow] in_bounds n }
ensures { result = n }
val (+) (a:t) (b:t) : t
requires { [@expl:integer overflow] in_bounds (a + b) }
ensures { result = a + b }
val (-) (a:t) (b:t) : t
requires { [@expl:integer overflow] in_bounds (a - b) }
ensures { result = a - b }
val (*) (a:t) (b:t) : t
requires { [@expl:integer overflow] in_bounds (a * b) }
ensures { result = a * b }
val (-_) (a:t) : t
requires { [@expl:integer overflow] in_bounds (- a) }
ensures { result = - a }
axiom extensionality: forall x y: t. to_int x = to_int y -> x = y
(* does not seems to be a systematically good idea
meta extensionality function to_int
*)
val (=) (a:t) (b:t) : bool
ensures { result <-> a = b }
ensures { to_int a = to_int b -> result }
val (<=) (a:t) (b:t) : bool
ensures { result <-> to_int a <= to_int b }
val (<) (a:t) (b:t) : bool
ensures { result <-> to_int a < to_int b }
val (>=) (a:t) (b:t) : bool
ensures { result <-> to_int a >= to_int b }
val (>) (a:t) (b:t) : bool
ensures { result <-> to_int a > to_int b }
use int.ComputerDivision
val (/) (a:t) (b:t) : t
requires { [@expl:division by zero] b <> 0 }
requires { [@expl:integer overflow] in_bounds (div a b) }
ensures { result = div a b }
val (%) (a:t) (b:t) : t
requires { [@expl:division by zero] b <> 0 }
requires { [@expl:integer overflow] in_bounds (mod a b) }
ensures { result = mod a b }
end
module Unsigned
use int.Int
let constant min_unsigned : int = 0
clone export Bounded_int with
constant min = min_unsigned, axiom .
constant zero_unsigned : t
axiom zero_unsigned_is_zero : to_int zero_unsigned = 0
constant radix : int
axiom radix_def : radix = max+1
end
module Byte
use int.Int
type byte = < range 0 255 >
let constant min_byte : int = 0
let constant max_byte : int = 255
let constant radix : int = max_byte + 1
function to_int (x: byte) : int = byte'int x
clone export Unsigned with
type t = byte,
constant max = byte'maxInt,
constant radix = radix,
goal radix_def,
function to_int = byte'int,
lemma zero_unsigned_is_zero,
lemma to_int_in_bounds,
lemma extensionality
end
module UnsignedGMP
(** Additional GMP-inspired arithmetic primitives *)
use int.Int
clone export Unsigned with axiom .
use int.EuclideanDivision
val add_mod (x y:t) : t
ensures { to_int result = mod (to_int x + to_int y) (max+1) }
val add_with_carry (x y:t) (c:t) : (t,t)
requires { 0 <= to_int c <= 1 }
returns { (r,d) ->
to_int r + radix * to_int d =
to_int x + to_int y + to_int c
/\ 0 <= to_int d <= 1 }
(* add_ssaaaa *)
val add_double (a1 a0 b1 b0:t) : (t,t)
returns { (h,l) -> l + radix * h
= mod (a0 + radix * a1 + b0 + radix * b1) (radix * radix) }
(* add_ssaaaa with no overflow *)
val add_double_nc (a1 a0 b1 b0:t) : (t,t)
requires { a0 + radix * a1 + b0 + radix * b1 < radix * radix }
returns { (h, l) -> l + radix * h = a0 + radix * a1 + b0 + radix * b1 }
(* add_ssaaaa with ghost carry *)
val add_double_gc (a1 a0 b1 b0:t) : (ghost t, t, t)
returns { (c,h,l) -> l + radix * h + radix * radix * c
= a0 + radix * a1 + b0 + radix * b1
/\ 0 <= to_int c <= 1 }
val sub_mod (x y:t) : t
ensures { to_int result = mod (to_int x - to_int y) radix }
val sub_with_borrow (x y:t) (b:t) : (t,t)
requires { 0 <= to_int b <= 1 }
returns { (r, d) ->
to_int r - radix * to_int d =
to_int x - to_int y - to_int b
/\ 0 <= to_int d <= 1 }
(* sub_ddmmss *)
val sub_double (a1 a0 b1 b0:t) : (t,t)
returns { (h,l) -> l + radix * h
= mod ((a0 + radix * a1) - (b0 + radix * b1))
(radix * radix) }
(* sub_ddmmss with no underflow *)
val sub_double_nb (a1 a0 b1 b0:t) : (t,t)
requires { 0 <= ((a0 + radix * a1) - (b0 + radix * b1)) }
returns { (h,l) -> l + radix * h = ((a0 + radix * a1) - (b0 + radix * b1)) }
(* sub_ddmmss with ghost borrow *)
val sub_double_gb (a1 a0 b1 b0:t) : (ghost t,t,t)
returns { (b,h,l) -> l + radix * h - radix*radix*b
= ((a0 + radix * a1) - (b0 + radix * b1))
/\ 0 <= b <= 1 }
val add3 (x y z:t) : (t,t)
returns { (r,d) ->
to_int r + radix * to_int d =
to_int x + to_int y + to_int z
/\ 0 <= to_int d <= 2 }
val mul_mod (x y:t) : t
ensures { to_int result = mod (to_int x * to_int y) radix }
val mul_double (x y:t) : (t,t) (* umul_ppmm *)
returns { (r,d) ->
to_int r + radix * to_int d =
to_int x * to_int y }
val minus_mod (x:t) : t
ensures { to_int result = mod (- (to_int x)) radix }
end
module Int16
use int.Int
type int16 = < range -0x8000 0x7fff >
(*
let constant min_int16 : int = - 0x8000
let constant max_int16 : int = 0x7fff
function to_int (x : int16) : int = int16'int x
*)
clone export Bounded_int with
type t = int16,
constant min = int16'minInt,
constant max = int16'maxInt,
function to_int = int16'int,
lemma to_int_in_bounds,
lemma extensionality
end
module Int31
use int.Int
type int31 = < range -0x4000_0000 0x3fff_ffff >
let constant min_int31 : int = - 0x4000_0000
let constant max_int31 : int = 0x3fff_ffff
function to_int (x : int31) : int = int31'int x
clone export Bounded_int with
type t = int31,
constant min = int31'minInt,
constant max = int31'maxInt,
function to_int = int31'int,
lemma to_int_in_bounds,
lemma extensionality
end
module Int32
use int.Int
type int32 = < range -0x8000_0000 0x7fff_ffff >
let constant min_int32 : int = - 0x8000_0000
let constant max_int32 : int = 0x7fff_ffff
function to_int (x : int32) : int = int32'int x
clone export Bounded_int with
type t = int32,
constant min = int32'minInt,
constant max = int32'maxInt,
function to_int = int32'int,
lemma to_int_in_bounds,
lemma extensionality
end
module Int32BV
use export Int32
use bv.BV32 as BV32
val to_bv (x: int32) : BV32.t
ensures { BV32.to_int result = to_int x }
val of_bv (x: BV32.t) : int32
ensures { to_int result = BV32.to_int x }
end
module Int32GMP
use int.Int
use export Int32
(* bitwise xor *)
val bxor (x y:int32) : int32
ensures { x = 0 -> result = y }
ensures { y = 0 -> result = x }
ensures { (x >= 0 /\ y >= 0) \/ (x < 0 /\ y < 0) -> result >= 0 }
ensures { (x < 0 /\ y >= 0) \/ (x >= 0 /\ y < 0) -> result < 0 }
end
module UInt16
use int.Int
type uint16 = < range 0 0xffff >
constant radix : int = uint16'maxInt + 1
clone export Unsigned with
type t = uint16,
constant max = uint16'maxInt,
constant radix = radix,
goal radix_def,
function to_int = uint16'int,
lemma zero_unsigned_is_zero,
lemma to_int_in_bounds,
lemma extensionality
end
module UInt32Gen
use int.Int
type uint32 = < range 0 0xffff_ffff >
let constant max_uint32 : int = 0xffff_ffff
let constant length : int = 32
let constant radix : int = max_uint32 + 1
function to_int (x : uint32) : int = uint32'int x
end
module UInt32
use export UInt32Gen
clone export Unsigned with
type t = uint32,
constant max = uint32'maxInt,
constant radix = radix,
goal radix_def,
function to_int = uint32'int,
lemma zero_unsigned_is_zero,
lemma to_int_in_bounds,
lemma extensionality
end
module UInt32BV
use export UInt32
use bv.BV32 as BV32
val to_bv (x: uint32) : BV32.t
ensures { BV32.t'int result = to_int x }
val of_bv (x: BV32.t) : uint32
ensures { to_int result = BV32.t'int x }
end
module UInt32GMP
use int.Int
use int.EuclideanDivision
use int.Power
use Int32
use export UInt32Gen
clone export UnsignedGMP with
type t = uint32,
constant max = uint32'maxInt,
constant radix = radix,
goal radix_def,
function to_int = uint32'int,
lemma zero_unsigned_is_zero,
lemma to_int_in_bounds,
lemma extensionality
val lsld (x cnt:uint32) : (uint32,uint32)
requires { 0 < to_int cnt < 32 }
returns { (r,d) -> to_int r + (max_uint32+1) * to_int d =
(power 2 (to_int cnt)) * to_int x }
val lsl (x cnt:uint32) : uint32
requires { 0 <= to_int cnt < 32 }
requires { (power 2 (to_int cnt)) * to_int x <= max_uint32 }
ensures { to_int result = (power 2 (to_int cnt)) * to_int x }
val lsr (x cnt:uint32) : uint32
requires { 0 <= to_int cnt < 32 }
requires { mod (to_int x) (power 2 (to_int cnt)) = 0 }
ensures { to_int x = (power 2 (to_int cnt)) * to_int result }
val div2by1 (l h d:uint32) : uint32
requires { to_int h < to_int d }
(* this pre implies d > 0 and also
l + (max+1)*h < (max+1)+(max+1)*h
= (max+1)*(h+1)
thus
(l + (max+1)*h)/d < (max+1)*(h+1)/d
<= max+1 (since h < d)
thus the result is <= max, no overflow
*)
ensures { to_int result
= div (to_int l + (max_uint32+1) * to_int h) (to_int d) }
val predicate is_msb_set (x:uint32) : bool
ensures { result <-> 2 * to_int x > max_uint32 }
val count_leading_zeros (x:uint32) : int32
requires { to_int x > 0 }
ensures { (power 2 (Int32.to_int result)) * to_int x <= max_uint32 }
ensures { 2 * (power 2 (Int32.to_int result)) * to_int x > max_uint32 }
ensures { 0 <= Int32.to_int result < 32 }
val count_trailing_zeros (x:uint32) : int32
requires { to_int x > 0 }
ensures { 0 <= result < 32 }
ensures { mod x (power 2 result) = 0 }
ensures { mod x (power 2 (result + 1)) <> 0 }
val of_int32 (x:int32) : uint32
requires { Int32.to_int x >= 0 }
ensures { to_int result = Int32.to_int x }
val to_int32 (x:uint32) : int32
requires { x <= max_int32 }
ensures { Int32.to_int result = to_int x }
end
module Int63
use int.Int
type int63 = < range -0x4000_0000_0000_0000 0x3fff_ffff_ffff_ffff >
let constant min_int63 : int = - 0x4000_0000_0000_0000
let constant max_int63 : int = 0x3fff_ffff_ffff_ffff
function to_int (x : int63) : int = int63'int x
clone export Bounded_int with
type t = int63,
constant min = int63'minInt,
constant max = int63'maxInt,
function to_int = int63'int,
lemma to_int_in_bounds,
lemma extensionality
let constant zero = (0:int63)
let constant one = (1:int63)
val constant max_int:int63
ensures { int63'int result = max_int63 }
val constant min_int:int63
ensures { int63'int result = min_int63 }
end
module Refint63
use int.Int
use Int63
use export ref.Ref
let incr (ref r: int63) : unit
requires { [@expl:integer overflow] to_int r < max_int63 }
ensures { to_int r = to_int (old r) + 1 }
= r <- r + (1:int63)
let decr (ref r: int63) : unit
requires { [@expl:integer overflow] min_int63 < to_int r }
ensures { to_int r = to_int (old r) - 1 }
= r <- r - (1:int63)
let (+=) (ref r: int63) (v: int63) : unit
requires { [@expl:integer overflow] in_bounds (to_int r + to_int v) }
ensures { to_int r = to_int (old r) + to_int v }
= r <- r + v
let (-=) (ref r: int63) (v: int63) : unit
requires { [@expl:integer overflow] in_bounds (to_int r - to_int v) }
ensures { to_int r = to_int (old r) - to_int v }
= r <- r - v
let ( *= ) (ref r: int63) (v: int63) : unit
requires { [@expl:integer overflow] in_bounds (to_int r * to_int v) }
ensures { to_int r = to_int (old r) * to_int v }
= r <- r * v
end
module MinMax63
use int.Int
use Int63
let min (x y: int63) : int63
ensures { result = if to_int x <= to_int y then x else y }
= if x <= y then x else y
let max (x y: int63) : int63
ensures { result = if to_int x >= to_int y then x else y }
= if x >= y then x else y
end
(** {2 Mutable states of pseudo-random generators}
Basically a reference containing a pure generator. *)
module State63
use int.Int
use Int63
type state = private mutable { }
val create (seed: int63) : state
val init (s: state) (seed: int63) : unit writes {s}
val self_init (s: state) : unit writes {s}
val random_bool (s: state) : bool writes {s}
val random_int63 (s: state) (n: int63) : int63 writes {s}
requires { 0 < n }
ensures { 0 <= result < n }
end
(** {2 A global pseudo-random generator} *)
module Random63
use int.Int
use Int63
use State63
val s: state
let init (seed: int63) = init s seed
let self_init () = self_init s
let random_bool ()
writes { s }
= random_bool s
let random_int63 (n: int63) : int63
requires { 0 < n } (* FIXME: n should be less than 2^30 *)
writes { s }
ensures { 0 <= result < n }
= random_int63 s n
end
module Int64
use int.Int
type int64 = < range -0x8000_0000_0000_0000 0x7fff_ffff_ffff_ffff >
let constant min_int64 : int = - 0x8000_0000_0000_0000
let constant max_int64 : int = 0x7fff_ffff_ffff_ffff
function to_int (x : int64) : int = int64'int x
clone export Bounded_int with
type t = int64,
constant min = int64'minInt,
constant max = int64'maxInt,
function to_int = int64'int,
lemma to_int_in_bounds,
lemma extensionality
end
module UInt64Gen
use int.Int
type uint64 = < range 0 0xffff_ffff_ffff_ffff >
let constant max_uint64 : int = 0xffff_ffff_ffff_ffff
let constant length : int = 64
let constant radix : int = max_uint64 + 1
function to_int (x : uint64) : int = uint64'int x
end
module UInt64
use export UInt64Gen
clone export Unsigned with
type t = uint64,
constant max = uint64'maxInt,
constant radix = radix,
goal radix_def,
function to_int = uint64'int,
lemma zero_unsigned_is_zero,
lemma to_int_in_bounds,
lemma extensionality
end
module UInt64GMP
use int.Int
use int.EuclideanDivision
use int.Power
use Int32
use Int64
use UInt32
use export UInt64Gen
clone export UnsignedGMP with
type t = uint64,
constant max = uint64'maxInt,
constant radix = radix,
goal radix_def,
function to_int = uint64'int,
lemma zero_unsigned_is_zero,
lemma to_int_in_bounds,
lemma extensionality
val constant uint64_max:uint64
ensures { uint64'int result = uint64'maxInt }
val lsld (x cnt:uint64) : (uint64,uint64)
requires { 0 < to_int cnt < 64 }
returns { (r,d) -> to_int r + (max_uint64+1) * to_int d =
(power 2 (to_int cnt)) * to_int x }
val lsl (x cnt:uint64) : uint64
requires { 0 <= to_int cnt < 64 }
requires { (power 2 (to_int cnt)) * to_int x <= max_uint64 }
ensures { to_int result = (power 2 (to_int cnt)) * to_int x }
val lsr (x cnt:uint64) : uint64
requires { 0 <= to_int cnt < 64 }
requires { mod (to_int x) (power 2 (to_int cnt)) = 0 }
ensures { to_int x = (power 2 (to_int cnt)) * to_int result }
val lsr_mod (x cnt: uint64) : uint64
requires { 0 <= cnt < 64 }
ensures { result = div x (power 2 cnt) }
val lsl_mod (x cnt: uint64) : uint64
requires { 0 <= cnt < 64 }
ensures { result = mod (x * power 2 cnt) radix }
val div2by1 (l h d:uint64) : uint64
requires { to_int h < to_int d }
(* this pre implies d > 0 and also
l + (max+1)*h < (max+1)+(max+1)*h
= (max+1)*(h+1)
thus
(l + (max+1)*h)/d < (max+1)*(h+1)/d
<= max+1 (since h < d)
thus the result is <= max, no overflow
*)
ensures { to_int result
= div (to_int l + (max_uint64+1) * to_int h) (to_int d) }
val predicate is_msb_set (x:uint64) : bool
ensures { result <-> 2 * to_int x > max_uint64 }
val count_leading_zeros (x:uint64) : int32
requires { to_int x > 0 }
ensures { (power 2 (Int32.to_int result)) * to_int x <= max_uint64 }
ensures { 2 * (power 2 (Int32.to_int result)) * to_int x > max_uint64 }
ensures { 0 <= Int32.to_int result < 64 }
val count_trailing_zeros (x:uint64) : int32
requires { to_int x > 0 }
ensures { 0 <= result < 64 }
ensures { mod x (power 2 result) = 0 }
ensures { mod x (power 2 (result + 1)) <> 0 }
val to_int32(x:uint64) : int32
requires { x <= max_int32 }
ensures { Int32.to_int result = x }
val of_int32(x:int32) : uint64
requires { Int32.to_int x >= 0 }
ensures { to_int result = Int32.to_int x }
val to_uint32(x:uint64) : uint32
requires { x <= max_uint32 }
ensures { UInt32.to_int result = x }
val of_uint32(x:uint32) : uint64
ensures { to_int result = UInt32.to_int x }
val to_int64(x:uint64) : int64
requires { x <= max_int64 }
ensures { Int64.to_int result = x }
val of_int64(x:int64) : uint64
requires { 0 <= x }
ensures { to_int result = x }
end
|